Сила взаимодействия параллельных токов. Закон ампера, взаимодействие параллельных токов

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF , с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в проводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:

dF = I . (111.1)

Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера (см. (111.1)) вычисляется по формуле

dF = IB dl sin, (111.2)

где a - угол между векторами dl и В.

Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I 1 и I 2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R . Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I 1 на элемент dl второго проводника с то­ком I 2 . Ток I 1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b 1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен

Направление силы dF 1 , с которой поле B 1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I 2 и вектором B 1 прямой, равен

dF 1 =I 2 B 1 dl , или, подставляя значение для В 1 , получим

Рассуждая аналогично, можно пока­зать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl пер­вого проводника с током I 1 , направлена в противоположную сторону и по модулю равна

Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5).

45. Закон Фарадея и его вывод из закона сохранения энергии

Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции. Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξ i определя­ются только скоростью изменения магнит­ного потока, т. е.

Теперь необходимо выяснить знак ξ i . В § 120 было показано, что знак магнитно­го потока зависит от выбора положитель­ной нормали к контуру. В свою очередь, положительное направление нормали свя­зано с током правилом правого винта (см. § 109). Следовательно, выбирая опре­деленное положительное направление нор­мали, мы определяем как знак потока маг­нитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими пред­ставлениями и выводами, можно соответ­ственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

ξξ i <0, т. е. поле индукционного тока на­правлено навстречу потоку; уменьшение

потока (dФ/dt<0) вызывает ξ i >0,

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца - общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сде­лал Г. Гельмгольц. Рассмотрим проводник с током I , который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно переме­щаться (см. рис. 177). Под действием си­лы Ампера F , направление которой пока­зано на рисунке, проводник перемещается на отрезок dx . Таким образом, сила Ампе­ра производит работу (см.(121.1)) dA =I dФ, где dФ - пересеченный проводни­ком магнитный поток.

Если полное сопротивление контура равно R , то, согласно закону сохранения энергии, работа источника тока за вре­мя dt (ξIdt ) будет складываться из рабо­ты на джоулеву теплоту (I 2 Rdt ) и работы по перемещению проводника в магнитном поле (I dФ):

где-dФ/dt=ξ i есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулиро­вать еще таким образом: э.д.с. ξ i элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξ i не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнит­ной индукции? Если проводник (подвиж­ная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противо­положно току, т. е. она будет создавать в проводнике индукционный ток противо­положного направления (за направление электрического тока принимается движе­ние положительных зарядов). Таким обра­зом, возбуждение э.д.с. индукции при движении контура в постоянном магнит­ном поле объясняется действием силы Ло­ренца, возникающей при движении про­водника.

Согласно закону Фарадея, возникнове­ние э.д.с. электромагнитной индукции возможно и в случае неподвижного кон­тура, находящегося в переменном магнит­ном поле. Однако сила Лоренца на непод­вижные заряды не действует, поэтому в данном случае ею нельзя объяснить воз­никновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в непод­вижных проводниках предположил, что всякое переменное магнитное поле воз­буждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция векто­ра Е В этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

47. . Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф= LI , (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В с/А.

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I / l )S . Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N , его длины l , площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L =const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

dI/dt>0 и ξ s <0, т. е. ток самоиндукции

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξ s > 0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

59. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю (см. (137.3)), а циркуляция вектора Е B оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D :

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D = 0 E ,

В=  0 Н,

j =E ,

где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла - интегральная

и дифференциальная - эквивалентны. Однако когда имеются поверхности разры­ва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D 1 n = D 2 n , E 1 = E 2 , B 1 n = B 2 n , H 1  = H 2 

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

44. . Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m , сохраняя по­стоянным угол а, вращается вокруг направления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные - вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Ферромагнетики и их свойства

Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами, су­ществуют еще сильномагнитные вещест­ва - ферромагнетики - вещества, обла­дающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагне­тикам кроме основного их представите­ля - железа (от него и идет название «ферромагнетизм») - относятся, напри­мер, кобальт, никель, гадолиний, их спла­вы и соединения.

Взаимодействие неподвижных зарядов описывается законом Кулона. Однако закон Кулона недостаточен для анализа взаимодействия движущихся зарядов. В опытах Ампера впервые появилось сообщение о том, что движущиеся заряды (токи) создают в пространстве некоторое поле, приводя к взаимодействию этих токов. Было установлено, что токи противоположных направлений отталкиваются, а одного направления – притягиваются. Поскольку оказалось, что поле тока, действует на магнитную стрелку точно так же, как и поле постоянного магнита, то это поле тока называли магнитным. Поле тока называется магнитным полем. Впоследствии было установлено, что у этих полей одна и та же природа.

Взаимодействие элементов тока .

Закон взаимодействия токов был открыт экспереметально задолго до создания теории относительности. Он значительно сложнее закона Кулона, описывающего взаимодействие неподвижных точечных зарядов. Этим и объясняется, что в его исследовании приняли участие многие ученые, а существенный вклад внесли Био (1774 — 1862), Савар (1791 — 1841), Ампер (1775 — 1836) и Лаплас(1749 — 1827).

В 1820 г. Х. К. Эрстед (1777 — 1851) открыл действие электрического тока на магнитную стрелку. В этом же году Био и Савар сформулировали закон для силы dF , с которой элемент тока I DL действует на магнитный полюс, удаленный на расстояние R от элемента тока:

DF I dL (16.1)

Где – угол, характеризующий взаимную ориентацию элемента тока и магнитного полюса. Функция вскоре была найдена экспериментально. Функция F (R ) Теоретически была выведена Лапласом в виде

F (R ) 1/r. (16.2)

Таким образом, усилиями Био, Савара и Лапласа была найдена формула, описывающая силу действия тока на магнитный полюс. В окончательном виде закон Био-Савара-Лапласа был сформулирован в 1826г. В виде формулы для силы, действующей на магнитный полюс, поскольку понятия напряженности поля еще не существовало.

В 1820г. Ампер открыл взаимодействие токов – притяжение или отталкивание параллельных токов. Им была доказана эквивалентность соленоида и постоянного магнита. Это позволило четко поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Ампер по своему образованию и склонностям был теоретиком и математиком. Тем не менее при исследовании взаимодействия элементов тока он выполнил очень скрупулезные экспериментальные работы, сконструировав ряд хитроумных устройств. Станок Ампера для демонстраци сил взаимодействия элементов тока. К сожалению, ни в публикациях, ни в его бумагах не осталось описания пути, каким он пришел к открытию. Однако формула Ампера для силы отличается от (16.2) наличием в правой части полного дифференциала. Это отличие несущественно при вычислении силы взаимодействия замкнутых токов, поскольку интеграл от полного дифференциала по замкнутому контуру равен нулю. Учитывая, что в экспериментах измеряется не сила взаимодействия элементов тока, а сила взаимодействия замкнутых токов, можно с полным основанием считать Ампера автором закона магнитного взаимодействия токов. Используемая в настоящее время формула для взаимодействия токов. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844г. Грассманом (1809 — 1877).

Если ввести 2 элемента тока и , то сила, с которой элемент тока действует на элемент тока будет определяться следующей формулой:

, (16.2)

Точно также можно записать:

(16.3)

Легко видеть:

Так как векторы и имеют между собой угол не равный 180°, то очевидно , т. е. III-ий закон Ньютона для элементов тока не выполняется. Но если вычислить силу, с которой ток , текущий по замкнутому контуру , действует на ток , текущий по замкнутому контуру :

, (16.4)

А затем вычислить , то , т. е. для токов Ш-ий закон Ньютона выполняется.

Описание взаимодействия токов с помощью магнитного поля.

В полной аналогии с электростатикой взаимодействие элементов тока представляется двумя стадиями: элемент тока в месте нахождения элемента создает магнитное поле, которое действует на элемент с силой . Поэтому элемент тока создает в точке нахождения элемента тока магнитное поле с индукцией

. (16.5)

На элемент , находящийся в точке с магнитной индукцией , действует сила

(16.6)

Соотношение (16.5), которое описывает порождение магнитного поля током, называется законом Био-Савара. Проинтегрировав (16.5) получим:

(16.7)

Где — радиус-вектор, проведенный от элемента тока к точке, в которой вычисляется индукция .

Для объемных токов закон Био-Савара имеет вид:

, (16.8)

Где j – плотность тока.

Из опыта следует, что для индукции магнитного поля справедлив принцип суперпозиции, т. е.

Пример.

Дан прямой бесконечный ток J. Вычислим индукцию магнитного поля в точке М на расстоянии r от него.

= .

= = . (16.10)

Формула (16.10) определяет индукцию магнитного поля, созданного прямым током.

Направление вектора магнитной индукции Приведено на рисунках.

Сила Ампера и сила Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Фактически эта сила

Или , где

Перейдем к силе, действующей на проводник с током длиной L . Тогда = и .

Но ток можно представить как , где — средняя скорость, n – концентрация частиц, S – площадь поперечного сечения. Тогда

, где . (16.12)

Так как , . Тогда , где — сила Лоренца, т. е. сила, действующая на заряд, движущийся в магнитном поле. В векторном виде

При сила Лоренца равна нулю, т. е. она не действует на заряд, который движется вдоль направления . При , т. е. сила Лоренца перпендикулярна скорости: .

Как известно из механики, если сила перпендикулярна скорости, то частицы движутся по окружности радиуса R, т. е. ,

Применим закон Ампера для вычисления силы взаимодействия двух длинных прямолинейных проводников с токами I 1 и I 2 , находящихся на расстоянии d друг от друга (рис. 6.26).

Рис. 6.26. Силовое взаимодействие прямолинейных токов:
1 - параллельные токи; 2 - антипараллельные токи

Проводник с током I 1 создает кольцевое магнитное поле, величина которого в месте нахождения второго проводника равна

Это поле направлено «от нас» ортогонально плоскости рисунка. Элемент второго проводника испытывает со стороны этого поля действие силы Ампера

Подставляя (6.23) в (6.24), получим

При параллельных токах сила F 21 направлена к первому проводнику (притяжение), при антипараллельных - в обратную сторону (отталкивание).

Аналогично на элемент проводника 1 действует магнитное поле, создаваемое проводником с током I 2 в точке пространства с элементом с силой F 12 . Рассуждая таким же образом, находим, что F 12 = –F 21 , то есть в этом случае выполняется третий закон Ньютона.

Итак, сила взаимодействия двух прямолинейных бесконечно длинных параллельных проводников, рассчитанная на элемент длины проводника, пропорциональна произведению сил токов I 1 и I 2 протекающих в этих проводниках, и обратно пропорциональна расстоянию между ними. В электростатике по аналогичному закону взаимодействуют две длинные заряженные нити.

На рис. 6.27 представлен опыт, демонстрирующий притяжение параллельных токов и отталкивание антипараллельных. Для этого используются две алюминиевые ленты, подвешенные вертикально рядом друг с другом в слабо натянутом состоянии. При пропускании через них параллельных постоянных токов силой около 10 А ленты притягиваются. а при изменении направления одного из токов на противоположное - отталкиваются.

Рис. 6.27. Силовое взаимодействие длинных прямолинейных проводников с током

На основании формулы (6.25) устанавливается единица силы тока - ампер , являющаяся одной из основных единиц в СИ.

Пример. По двум тонким проводам, изогнутым в виде одинаковых колец радиусом R = 10 см, текут одинаковые токи I = 10 А в каждом. Плоскости колец параллельны, а центры лежат на ортогональной к ним прямой. Расстояние между центрами равно d = 1 мм. Найти силы взаимодействия колец.

Решение. В этой задаче не должно смущать, что мы знаем лишь закон взаимодействия длинных прямолинейных проводников. Поскольку расстояние между кольцами много меньше их радиуса, взаимодействующие элементы колец «не замечают» их кривизны. Поэтому сила взаимодействия дается выражением (6.25), куда вместо надо подставить длину окружности колец Получаем тогда

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

На магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся повернуть стрелку. Французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи). Характеристика, для описания магнитного поля - вектор магнитной индукции . Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле. За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора . Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции: F ~ IΔl sin α

Эта сила называется силой Ампера . Она достигает максимального по модулю значения F max , когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом: модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:

В общем случае сила Ампера выражается соотношением: F = IBΔl sin α

Это соотношение принято называть законом Ампера. В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10 –4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки. Магнитное взаимодействие параллельных проводников с током используется в системе СИ для определения единицы силы тока – ампера: Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2·10 –7 H на каждый метр длины. Формула, выражающая закон магнитного взаимодействия параллельных токов, имеет вид:

14. Закон Био-Савара-Лапласа. Вектор магнитной индукции. Теорема о циркуляции вектора магнитной индукции.

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Магнитное поле любого тока может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока:

Элемент тока длины dl создает поле с магнитной индукцией: или в векторной форме:

Здесь I – ток; – вектор, совпадающий с элементарным участком тока и направленный в ту сторону, куда течет ток; – радиус-вектор, проведенный от элемента тока в точку, в которой мы определяем ; r – модуль радиус-вектора; k

Вектор магнитной индукции - это основная силовая характеристика магнитного поля (обозначается ). Вектор магнитной индукции направлен перпендикулярно плоскости, проходящей через и точку, в которой вычисляется поле.

Направление связано с направлением « правилом буравчика »: направление вращения головки винта дает направление , поступательное движение винта соответствует направлению тока в элементе.

Таким образом, закон Био–Савара–Лапласа устанавливает величину и направление вектора в произвольной точке магнитного поля, созданного проводником с током I.

Модуль вектора определяется соотношением:

где α – угол между и ; k – коэффициент пропорциональности, зависящий от системы единиц.

В международной системе единиц СИ закон Био–Савара–Лапласа для вакуума можно записать так: где – магнитная постоянная.

Теорема о циркуляции вектора : циркуляция вектора магнитной индукции равна току, охваченному контуром, умноженному на магнитную постоянную. ,