Соединения титана iii проявляют свойства. Соединения титана, циркония и гафния

Оксиды титана:

Ti(IV) –TiO 2 – Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti(III) –Ti 2 O 3 – окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединенияTi(III).

TI(II) –TiO 2 - Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, - соединение ти­тана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала ру­тила, t° пл выше 1850°. Плотностъ 3,9 - 4,25 г/см 3 . Практически нерастворима в щелочах и кислотах, за исключениемHF. В концентрированной Н 2 SO 4 растворяется лишь при длительном на­гревании. При сплавлении двуокиси титана с едкими или угле­кислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата)Ti(OH) 4 , легко рас­творимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горя­чей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выра­жены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гид­ролизуются с образованием двухвалентного радикала титанилаTiO 2 + . Последний входит в состав солей в качестве катиона (например, сернокислый титанилTiOSO 4 *2H 2 O). Двуокись титана является одним из важнейших соединений титана, служит исходным материа­лом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, форфоровых масс. Из нее изготов­ляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO 2 + 2H 2 SO 4 = Ti(SO4) 2 + 2H 2 O

С пероксидом водорода образует ортотитановую кислоту H4TiO4:

TiO 2 + 2H 2 O 2 = H 4 TiO 4

В концентрированных растворах щелочей:

TiO 2 + 2NaOH = Na 2 TiO 3 + H 2 O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO 2 + 2NH 3 = 2TiN + 3H 2 O + O 2

В насыщенном растворе гидрокарбоната калия:

TiO 2 + 2KHCO 3 = K 2 TiO 3 + H 2 O + 2CO 2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO 2 + BaO = BaO∙TiO 2 (BaTiO 3)

TiO 2 + BaCO 3 = BaO∙TiO2 + CO 2 (BaTiO 3)

TiO 2 + Ba(OH) 2 = BaO∙TiO 2 (BaTiO 3)

Гидроксиды титана:

H 2 TiO 3 – П.Р. = 1,0∙10 -29

H 2 TiO 4 - П.Р. = 3,6∙10 -17

TIO(OH) 2 - П.Р. = 1,0∙10 -29

Ti(OH) 2 - П.Р. = 1,0∙10 -35

Гидроскида Ti(IV) –Ti(OH) 4 или H 4 TiO 4 - ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солейTi(IV), представляет собой гидратированную формуTiO 2 . Это вещество растворяется в кончентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы:M 2 TiO 3 ∙nH 2 OиM 2 Ti 2 O 5 ∙nH 2 O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe 2 TiГ 6 (где Мe- одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогенидыTiГ 4 . Это указывает на устойчивость комплексных ионовTiГ 6 в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н 2 ЭГ 6 , в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi 2 O 3 (т. пл. 1820 °С) может быть получен прокаливанием TiO 2 до 1200 °C в токе водорода. В качестве промежуточного продукта при 700-1000 °С образуется синий Ti 2 O 3 .

В воде Ti 2 O 3 практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO 2 титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная “титановая бронза” состава Na0,2TiO 2 .

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti(OH) 3 идёт образование пероксида водорода. В присутствии Са(ОН) 2 (связывающего Н 2 О 2) реакция протекает по уравнению:

2Ti(ОН) 3 + O 2 + 2H 2 O = 2Ti(OH) 4 + H 2 O 2

Азотнокислые соли Тi(OH) 3 восстанавливает до аммиака.

Фиолетовый порошок ТiCl 3 может быть получен пропусканием смеси паров ТiCl 4 c избытком водорода сквозь нагретую до 650 °С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti 2 Cl 6) и затем дисмутацию по схеме:

2TiCl 3 = TiCl 4 + TiCl 2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl 4 (т. е. СuCl·TiCl 3).

Трёххлористый титан образуется также при действии на TiCl 4 водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti 3+ фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl 3 ·6H 2 O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl 3 . Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl 3 , отвечают формулы Cl 3 и Cl·2Н 2 О. При стоянии в открытом сосуде раствор TiCl 3 постепенно обесцвечивается ввиду окисления Ti 3+ до Ti 4+ кислородом воздуха по реакции:

4TiCl 3 + O 2 +2H 2 O = 4TiOCl 2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi 3+ окисляется водой (с выделением водорода).

Безводный Ti 2 (SO 4) 3 имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti 3+ фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe·12H 2 O (где Мe- Сs или Rb) и Me (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл. 1750 °С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700 °С спрессованной смеси TiO 2 + Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000 °С) нитрила титанила. Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS 2 в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti 2 S 3). Известны также TiSe, TiTe и силицид состава Ti 2 Si.

Все TiГ 2 образуются при нагревании соответствующих галогенидовTiГ 3 без доступа воздуха за счёт их разложения по схеме:

2TiГ 3 =TiГ 4 +TiГ 2

При несколько более высоких температурах галогениды TiГ 2 сами подвергаются дисмутации по схеме: 2TiГ 2 =TiГ 4 +Ti

Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700 °С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl 2 ·4NH 3 . Раствор TiCl 2 может быть получен восстановлением TiCl 4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl 2 быстро буреет, затем становится фиолетовым (Ti 3+) и, наконец, вновь обесцвечивается (Ti 4+). Получаемый действием щёлочи на раствор TiCl 2 чёрный осадок Ti(OH) 2 исключительно легко окисляется.

Оксиды титана:

Ti (IV) - TiO 2 - Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti (III) - Ti 2 O 3 - окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединенияTi (III).

TI (II) - TiO 2 - Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, - соединение титана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала рутила, t° пл выше 1850°. Плотностъ 3,9 - 4,25 г/см 3 . Практически нерастворима в щелочах и кислотах, за исключениемHF. В концентрированной Н 2 SO 4 растворяется лишь при длительном нагревании. При сплавлении двуокиси титана с едкими или углекислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата) Ti (OH) 4 , легко растворимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горячей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выражены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гидролизуются с образованием двухвалентного радикала титанила TiO 2 + . Последний входит в состав солей в качестве катиона (например, сернокислый титанил TiOSO 4 *2H 2 O). Двуокись титана является одним из важнейших соединений титана, служит исходным материалом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, фарфоровых масс. Из нее изготовляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO 2 + 2H 2 SO 4 = Ti (SO4) 2 + 2H 2 O

С пироксидом водорода образует ортотитановую кислоту H4TiO4:

TiO 2 + 2H 2 O 2 = H 4 TiO 4

В концентрированных растворах щелочей:

TiO 2 + 2NaOH = Na 2 TiO 3 + H 2 O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO 2 + 2NH 3 = 2TiN + 3H 2 O + O 2

В насыщенном растворе гидрокарбоната калия:

TiO 2 + 2KHCO 3 = K 2 TiO 3 + H 2 O + 2CO 2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO 2 + BaO = BaO TiO 2 (BaTiO 3)

TiO 2 + BaCO 3 = BaO TiO2 + CO 2 (BaTiO 3)

TiO 2 + Ba (OH) 2 = BaO TiO 2 (BaTiO 3)

Гидроксиды титана:

H 2 TiO 3 - П.Р. = 1,0 10 -29

H 2 TiO 4 - П.Р. = 3,6 10 -17

TIO (OH) 2 - П.Р. = 1,0 10 -29

Ti (OH) 2 - П.Р. = 1,0 10 -35

Гидроскида Ti (IV) - Ti (OH) 4 или H 4 TiO 4 - ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солейTi (IV), представляет собой гидратированную формуTiO 2 . Это вещество растворяется в концентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы: M 2 TiO 3 nH 2 OиM 2 Ti 2 O 5 nH 2 O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe 2 TiГ 6 (где Мe - одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогенидыTiГ 4 . Это указывает на устойчивость комплексных ионовTiГ 6 в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н 2 ЭГ 6 , в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi 2 O 3 (т. пл.1820°С) может быть получен прокаливанием TiO 2 до 1200°C в токе водорода. В качестве промежуточного продукта при 700-1000°С образуется синий Ti 2 O 3 .

В воде Ti 2 O 3 практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO 2 титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная "титановая бронза” состава Na0,2TiO 2 .

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti (OH) 3 идёт образование пероксида водорода. В присутствии Са (ОН) 2 (связывающего Н 2 О 2) реакция протекает по уравнению:

2Ti (ОН) 3 + O 2 + 2H 2 O = 2Ti (OH) 4 + H 2 O 2

Азотнокислые соли Тi (OH) 3 восстанавливает до аммиака.

Фиолетовый порошок ТiCl 3 может быть получен пропусканием смеси паров ТiCl 4 c избытком водорода сквозь нагретую до 650°С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti 2 Cl 6) и затем дисмутацию по схеме:

2TiCl 3 = TiCl 4 + TiCl 2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl 4 (т.е. СuCl·TiCl 3).

Трёххлористый титан образуется также при действии на TiCl 4 водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti 3+ фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl 3 ·6H 2 O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl 3 . Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl 3 , отвечают формулы Cl 3 и Cl·2Н 2 О. При стоянии в открытом сосуде раствор TiCl 3 постепенно обесцвечивается ввиду окисления Ti 3+ до Ti 4+ кислородом воздуха по реакции:

4TiCl 3 + O 2 +2H 2 O = 4TiOCl 2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi 3+ окисляется водой (с выделением водорода).

Безводный Ti 2 (SO 4) 3 имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti 3+ фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe ·12H 2 O (где Мe - Сs или Rb) и Me (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл.1750°С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700°С спрессованной смеси TiO 2 + Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000°С) нитрила титанила.

Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS 2 в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti 2 S 3). Известны также TiSe, TiTe и силицид состава Ti 2 Si.

Все TiГ 2 образуются при нагревании соответствующих галогенидовTiГ 3 без доступа воздуха за счёт их разложения по схеме:

2TiГ 3 =TiГ 4 +TiГ 2

При несколько более высоких температурах галогениды TiГ 2 сами подвергаются дисмутации по схеме: 2TiГ 2 =TiГ 4 +Ti

Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700°С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl 2 ·4NH 3 . Раствор TiCl 2 может быть получен восстановлением TiCl 4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl 2 быстро буреет, затем становится фиолетовым (Ti 3+) и, наконец, вновь обесцвечивается (Ti 4+). Получаемый действием щёлочи на раствор TiCl 2 чёрный осадок Ti (OH) 2 исключительно легко окисляется.

При высокой температуре титан соединяется с галогенами, кислородом серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротитана ) в качестве добавки к стали. Титан соединяется с находящимися в расплавленной стали азотом и кислородом и этим предотвращает выделение последних при затвердевании стали, - литье получается однородным и не содержит пустот.

Соединяясь с углеродом, титан образует карбид. Из карбидов титана и вольфрама с добавкой кобальта получают сплавы, по твердости приближающиеся к алмазу.

Диоксид титана TiO 2 - белое тугоплавкое вещество, нерастворимое в воде и разбавленных кислотах. Это - амфотерный оксид, но как основные, так и кислотные свойства у него выражены слабо.

Встречается в природе как рутил (кубическая сингония), реже в виде анатаза (тетрагональная сингония) и брукита (ромбическая сингония). В рутиле каждый ион Ti 4+ окружен шестью ионами О 2- , а каждый ион О 2- окружен тремя ионами Ti 4+ . В остальных двух кристаллических формах непосредственные соседи ионов те же.

Совершенно чистый диоксид титана бесцветен. В природе он обычно загрязнен окисями железа и поэтому окрашен.

Совершенно не растворяется в воде и в разбавленных кислотах. В теплой концентрированной серной кислоте он растворяется медленно с возможным образованием сульфита титана Ti(SO 4) 2 , который, однако, нельзя выделить в чистом виде из-за легкости его перехода вследствие гидролиза в сульфит титанила (TiO)SO 4 . Эта растворимая в холодной воде соль при нагревании также гидролизуется с образованием H 2 SO 4 и гидратированного диоксида титана, так называемой в-титановой или метатитановой кислоты . Легкость с которой происходит этот гидролиз, говорит о слабых основных свойствах гидроокиси титана. Сульфат титана дает с сульфатами щелочных металлов (которые добавляются к используемой для растворения диоксида титана серной кислоте) двойные соли, например K 2 , более устойчивые к гидролизу, чем простые сульфаты.

Гидроокиси и карбонаты щелочных металлов осаждают из растворов сульфатов на холоду студенистый гидратированный диоксид титана, так называемую Ь-титановую кислоту , отличающуюся от в-титановой более высокой реакционной способностью (так, например Ь-титановая кислота растворяется в щелочах, в которых в-титановая нерастворима). Гидроокись четырехвалентного титана, или собственно титановую кислоту Ti(OH) 4 , нельзя выделить, в этом она похожа на кремниевую и оловянную кислоты. Ь- и в- титановые кислоты, представляющие собой более или менее дегидратированные производные гидроокиси титана(IV), полностью сравнимы с Ь- и в-оловянными кислотами.

Нейтральный или подкисленный раствор сульфата титанила, а также других солей титана окрашивается перекисью водорода в темно-оранжевый цвет (реакция обнаружения перекиси водорода). Аммиак осаждает из этих растворов пероксотитановую кислоту H 4 TiO 5 желто-коричневого цвета, имеющую формулу Ti(OH) 3 O-OH.

Применяется TiO 2 при изготовлении тугоплавких стекол, глазури, эмали, жароупорной лабораторной посуды, а также для приготовления белой масляной краски, обладающей высокой кроющей способностью (титановые белила ).

Сплавлением TiO 2 с BaCO 3 получают титанат бария BaTiO 3 . Эта соль имеет очень высокую диэлектрическую проницаемость и, кроме того, обладает способностью деформироваться под действием электрического поля. Кристаллы титаната бария применяются в электрических конденсаторах высокой емкости и малых размеров, в ультразвуковой аппаратуре, в звукоснимателях, в гидроакустических устройствах.

Хлорид титана (IV) TiCl 4 , получаемый тем же способом, что и SiCl 4 , представляет собой бесцветную жидкость с температурой кипения 136?C и температурой плавления -32?С, гидролизующуюся водой с образованием TiO 2 и 4HCl. С галогенидами щелочных металлов хлорид титана(IV) дает двойные хлориды, содержащие комплексный ион 2- . Фторид титана (IV) TiF 4 выделяют в виде белого порошка с температурой плавления 284?С; он также легко гидролизуется и образует с HF гексафторотитановую (IV) кислоту H 2 TiF 6 , подобную гексафторкремниевой кислоте.

Безводный хлорид титана (III) TiCl 3 получают в виде фиолетового порошка пропусканием паров TiCl 4 вместе с Н 2 через медную трубку, нагретую примерно до 700?C. В виде водного раствора (фиолетового цвета) его получают восстановлением TiCl 4 в соляной кислоте при помощи цинка или электролитически. Так же получают и сульфат титана(III). Из водного раствора хлорида титана(III) выкристаллизовывается фиолетовый гексагидрат TiCl 3 ?6H 2 O.

Хлорид титана (II) TiCl 2 , окрашенный в черный цвет, получают термическим разложением TiCl 3 при 700ўЄС в атмосфере водорода:

Бесцветный водный раствор этого хлорида быстро окисляется на воздухе, при этом он вначале окрашивается в фиолетовый цвет, а затем снова становится бесцветным вследствие образования сначала соединения Ti(III), а затем соединения Ti(IV).

Карбонитриды, оксикарбиды и оксинитриды титана. Обнаружено, что характер зависимости растворения тугоплавких фаз внедрения (ТФВ) - карбидов, нитридов и оксидов титана - от состава коррелирует с изменением степени металличности связей Ti-Ti в ряду TiC-TiN-TiO, а именно: с увеличением степени металличности фаз в этом направлении их химическая стойкость в HCl и H 2 SO 4 снижается, а в HNO 3 - растет. Поскольку карбиды, нитриды и монооксид титана характеризуются полной взаимной растворимостью, то можно ожидать, что и при взаимодействии их твердых растворов с кислотами будет проявляться аналогичная закономерность.

Однако имеющиеся в литературе сведения о зависимости степени растворения TiC x O y и TiN x O y от состава в минеральных кислотах плохо согласуются с этим предположением. Так, растворимость TiC x O y (фракция <56 мкм) в конц. HCl отсутствует вообще (20ўЄC, 6 ч и 100ўЄС, 3 ч), а в H 2 SO 4 - отсутствует при 20ўЄC (6 ч), но монотонно возрастает от 3% (TiC 0.30 O 0.78) до 10% (TiC 0.86 O 0.12) при 100ўЄC (3 ч). Степень растворения TiC x O y (фракция 15-20 мкм) в 92%-ной H 2 SO 4 (100ўЄC, 1 ч), напротив, уменьшается с ростом содержания углерода от 16% (TiC 0.34 O 0.66) до 2%(TiC 0.78 O 0.22). Степень растворения TiC x O y в конц. HCl (d =1,19 г/см) в тех же условиях достигает 1-2%, не обнаруживая,однако, какой-либо зависимости от состава фазы. Степень растворения TiN x O y в конц. HNO 3 - низкая (2,5-3,0%) и не зависит от состава оксинитрида (20ўЄC, 6 ч). С другой стороны степень растворения TiN x O y в HNO 3 в тех же условиях варьирует в очень широких пределах: от 98% для TiC 0.88 O 0.13 до 4,5% для TiC 0.11 O 0.82 . Трудно сказать что-либо определенное о характере зависимости степень растворения - состав карбонитрида титана в соляной и серной кислотах. Степень растворения TiC x O y в HCl очень мала (0,3%) и не зависит от состава карбонитрида (60ўЄC, 6 ч). Однако в конц. H 2 SO 4 она на порядок выше (3,0-6,5%) и характеризуется минимумом (2%) для образца состава TiC 0.67 O 0.26 .

Полученные экспериментальные данные позволяют утверждать, что характер зависимости растворения TiC x N y , TiC x O y и TiN x O y от состава в HCl, H 2 SO 4 и HNO 3 является вполне определенным и, более того, подобным установленному ранее для TiC x , TiN x и TiO x . Это означает, что и причины качественно различного хода этих зависимостей в HCl и H 2 SO 4 , с одной стороны, и в HNO 3 с другой, должны быть общими для всех исследованных соединений системы TI-C-N-O, т.е. определяться степенью металличности связи Ti-Ti и пассивирующей способностью образующихся продуктов взаимодействия.

Титанаты лития и цинка Li 2 ZnTi 3 O 8 и Li 2 Zn 3 Ti 4 O 12 имеют кубическую шпинельную структуру с различным распределением катионов по позициям. Установлено, что эти соединения являются твердыми литийпроводящими электролитами. В Li 2 ZnTi 3 O 8 катионы лития и титана упорядочены в октаэдрических позициях в соотношении 1:3, половина атомов лития и цинк статистически распределены по тетраэдрическим позициям: (Li 0.5 Zn 0.5)O 4 . Кристаллохимическая формула Li 2 Zn 3 Ti 4 O 12 может быть записана как (Zn)O 4 . На основе анализа ИК- и КР-спектров предложен иной способ распределения атомов лития и цинка в структуре данных шпинелей: литий имеет тетраэдрическую координацию, а цинк и титан - октаэдрическую. Отмечено также сильное искажение октаэдров TiO 6: так, в Li 2 Zn 3 Ti 4 O 12 окружение ионов Ti 4+ ,близко к пяти координационному. Невысокая ионная проводимость этих титанатов при повышенных температурах объясняется тетраэдрической координацией атомов лития.

На примере галидных шпинелей Li 2 MX 4 (M=Mg 2+ ,Mn 2+ ,Fe 2+ ; X=Cl - ,Br -) установлено, что катионный состав и распределение атомов лития по позициям оказывает сильное влияние на величину электропроводности. Так как в структуре шпинели нет общих граней между одинаковыми катионными позициями, в ионном переносе участвует несколько различных позиций. Высокие значения ионной проводимости в хлоридных шпинелях наблюдались в результате разупорядочения структуры соединений, связанного с переходом атомов лития при повышенных температурах из тетраэдрических позиций 8а в свободные октаэдрические позиции 16с . При этом шпинельная структура превращалась в структуру типа NaCl. Информативным методом исследования разупорядочения структуры хлоридных шпинелей явилось изучение КР-спектров соединений при высоких температурах.