Методы математической статистики (2) - Реферат. Основные понятия математической статистики Помощью методов математической статистики что

Математическая статистика - Наука о том, как систематизировать и использовать статистические данные для научных и прикладных целей.

Математическая статистика в психологии

В психологии как науке математическая статистика применяется очень широко. С помощью тех или иных способов, например тестирования, разным особенностям поведения человека сопоставляются числа (шкалируются), и с этими числами уже работают методами математической статистики. После применения этих методов получаются новые данные, которые следует осмыслить.

Без применения математической статистики психология была бы довольно плоской и малоинформативной наукой, основанной на домыслах и спекуляциях (как это, например, имеет место быть в психоанализе). Разумеется, использование математической статистики не является "противоядием" против домыслов и спекуляций, однако предмет рассуждений становится значительно богаче.

Рассмотрим типичный и простой случай использования математической статистики. Допустим, кто-то провел исследование группы школьников. В числе прочих были найдены такие параметры, как экстраверсия-интроверсия и уровень интеллекта. Психолога-исследователя заинтересовало, а как связаны эти параметры между собой. Правда ли, что интроверты в среднем умнее экстравертов? Для этого группу испытуемых (выборку) можно поделить на две подгруппы: экстравертов и интровертов. Далее по каждой подгруппе находится среднее арифметическое по уровню интеллекта. Если, скажем, у интровертов в среднем IQ выше, значит, они умнее экстравертов. Это один подход. Другой может состоять в том, чтобы разделить испытуемых на подгруппу с высоким IQ (более 100) и низким (менее 100), а потом посчитать среднее по экстраверсии-интроверсии в каждой группе. Третий подход может состоять в том, чтобы вместо деления на подгруппы и высчитывания в них средних задействовать более сложный метод – корреляционный анализ. Все эти три методы по-разному, но покажут одну и ту же связь.

Математическая статистика позволяет делать интересные, иногда удивительные открытия. Продолжим наш гипотетический пример. Предположим, что психолог нашел парадоксальный результат, который противоречит с его прошлым опытом, знаниями. Скажем, он установил, что в одной школе экстраверты умнее интровертов, хотя во всех других школах было наоборот. Почему так? Дотошный психолог может начать свое расследование и установит, что, к примеру, это связано с тем, что в этой школе экстраверты ходят на факультатив по физике (потому что там «заводной учитель») и развивают свой интеллект, а интроверты ходят на факультатив по литературе (потому что там «душевный учитель»), где развивают другие качества своей души. Может ли, например, психоаналитик дойти до такого открытия? Крайне маловероятно.

В психологических исследованиях в расчет берутся не только такие чисто психологические параметры, как, скажем, интеллект, экстравертированность или тревожность. Могут использоваться и такие данные, как возраст, пол, уровень образования, рост, вес, физическая сила, политические взгляды, стаж работы и многое другое. Часто бывает, что именно без таких непсихологических показателей исследования оказываются неполными, малоинформативными. Также часто бывает, что представители других наук (например, социологии или биологии) тоже используют психологические параметры в своих исследованиях.

Математическая статистика позволяет много вещей:

Практические психологи в своей работе обычно ограничиваются нахождением средней арифметической, с разделением на подгруппы (как в примере выше). Ученые-психологи используют самый разнообразный арсенал методов математической статистики. Рассмотрим основные.

Нахождение средней арифметической

Самый банальный и простой метод. Показатели (например, рост испытуемых) складываются, затем делятся на число испытуемых. Несмотря на простоту, метод, конечно, очень информативный и наглядный. Наглядность – важное качество метода для практического психолога. Когда он представляет результаты своих исследований заказчику (например, директору школы), тот далеко не всегда способен понять сущность корреляционного или дисперсионного анализа. Разделение испытуемых на подгруппы по произвольному основанию усиливает потенциал средней арифметической, позволяя закрыть большинство потребностей исследователя.

Нахождение моды и медианы

Предположим, мы обследовали 1000 студентов – измеряли их рост с точностью до сантиметра. Эти данные заносили в таблицу. Если в таблице чаще всего встречается значение, скажем, 172 сантиметра, это и есть мода нашей выборки. Аналогичным, кстати, образом слово "мода" используется и в быту: если в этом сезоне чаще всего можно встретить шапочки красного цвета, значит это мода, хотя на долю этих шапочек может приходиться всего лишь 20 или 30 процентов.

В психологических исследованиях обычно мода находится где-то рядом со средней арифметической. Если мода 172 см, то и средняя будет около того. Чем больше выборка, тем ближе мода и среднее арифметическое.

Далее. Предположим, мы поделили своих студентов на две равные группы: в первой группе 500 низких студентов, во второй группе 500 высоких студентов. Значение роста, которое приходится на 500-го или 501-го студента и есть медиана . Медиана обычно тоже находится рядом со средней арифметической.

Выявление рассеяния значений

Как известно, средняя температура по больнице не так уж важна. И в хорошей больнице, где лечат хорошо, средняя температура может быть 36,6°C; и в плохой может быть такая же: просто у кого-то жар в 40 °C, а кто-то уже умер, и у него 18°C.

Самый простой способ оценить рассеяние выборки – найти ее размах (иначе – разброс). Если в нашей выборке самый низкий студент имеет рост 148 см, а самый высокий 205 см, значит размах выборки составит 205-148=57 см. Это величина важна в первую очередь для того, чтобы оценить, в каких рамках вообще меняется данный параметр.

Далее. Предположим такую ситуацию. Лет через двадцать по прихоти какого-нибудь богатого человека у него появятся дети-клоны. Ещё через двадцать лет они поступят в университет. И будет в университете выборка студентов объемом 1000 человек, из которых 998 имеют рост 177 см, один – 148 см, один – 205 см. По основным параметрам – средней арифметической, моде, медиане, размаху – эта выборка может не отличаться от другой выборки студентов (там будут такие же значения). Но при этом во второй (нормальной) выборке будет какое-то количество студентов с ростом 150-160 см, какое-то с ростом 180-190 см и т.д. Так что же, получается, что с точки зрения математической статистики эти группы одинаковые?

Одного взгляда на этот рисунок достаточно, чтобы понять, что группы различаются по рассеянию значений. Поэтому в статистике есть более точный инструмент для оценки рассеивания – дисперсия . Дисперсию исчисляют так: находят среднее арифметическое, потом для каждого случая находят отклонение от среднего, возводят это значение в квадрат, в конце делят на общее количество случаев. Из значения дисперсии легко получить стандартное отклонение : оно есть квадратный корень из дисперсии. Стандартное отклонение обозначает, что понятно, стандартное отклонение: то есть мера того, насколько в среднем значения вообще отклоняются.

Стандартное отклонение измеряется в тех же самых единицах, что и сам параметр. В первой нашей гипотетической группе, где почти все студенты одинаковы, стандартное отклонение будет крайне малым (менее 1 см). Во второй группе будет значительно больше – сантиметров 10-15. Если нам скажут, что средний рост студентов составляет 175 см при стандартном отклонении 12 см, мы будем знать, что большинство студентов (примерно 2/3) находится в диапазоне от 163 до 187 см.

t-критерий Стьюдента

Предположим, мы решили провести эксперимент такого рода. Мы взяли группу испытуемых. Перед началом эксперимента протестировали их, скажем, на уровень креативности. Далее они целый месяц занимались по часу в день рисованием. В конце эксперимента мы опять проверили их на уровень креативности. Был замечен результат, но довольно малый, и скептики стали нам заявлять, что уровень креативности не повысился, небольшое повышение средней арифметической это всего лишь случайность.

Для таких ситуаций придумали разные критерии. Один из них – наиболее популярный – это t-критерий Стьюдента. В числителе у него разница средних арифметических. В знаменателе – корень из суммы квадратов дисперсий (имеется в виду первый и второй случай тестирования). Чем больше разница между средними арифметическими, тем лучше (наш труд не остался напрасным), и чем меньше разброс значений в обоих случаях диагностики, тем тоже лучше: когда разброс значений больше, тогда и случайные колебания тоже больше.

Для применения данного критерия есть существенное ограничение – распределение показателей должно быть близко к так называемому нормальному (колоколообразному).

Существуют специальные критерии для определения степени нормальности распределения.

Корреляция

В психологии, как наверное ни в одной другой науке, любят находить коэффициенты корреляции. Существует несколько разных подходов, в том числе и для нормального, и для не нормального распределения. Все они показывают степень зависимости одного параметра от другого. Если один параметр (например, вес человека) сильно зависит от другого параметра (например, рост человека), тогда коэффициент корреляции будет близок к +1. Если зависимость обратная (например, чем человек выше, тем менее ловок он), тогда коэффициент корреляции будет стремиться к -1. Если зависимости нет (скажем, удачливость при игре в карты не зависит от роста человека), тогда коэффициент корреляции будет около 0.

Если взять группу испытуемых, зафиксировать их рост и вес, а потом результаты перенести на двухмерный график, то получится примерно следующая картина, которая свидетельствует о том, что корреляция положительная, примерно на уровне +0.5.

Факторный анализ

Наиболее, пожалуй, таинственный анализ. Некоторая загадочность его объясняется тем, что сам он предназначен для того, чтобы найти новый параметр, который многое объясняет, но при этом непосредственно в ходе эксперимента не исследовался. Как правило, в ходе факторного анализа находятся наиболее влиятельные параметры, от которых зависят более мелкие, частные.

Допустим, мы проводили исследование со школьниками. В числе прочих фиксировались следующие параметры: общая успеваемость, успеваемость по точным предметам, успеваемость по гуманитарным предметам, объем кратковременной памяти, объем и распределение внимания, активность мышления, пространственное воображение, общая осведомленность, общительность, тревожность. Если применить корреляционный анализ и составить так называемую матрицу корреляций (где отражена связь каждого параметра с каждым), то можно увидеть, что большинство этих параметров между собой хорошо коррелирует. Исключение составляет последние два, которые с другими связаны слабо. Уже глядя на эту матрицу можно предположить, что за большинством параметров стоит некий один общий (сверх-параметр), который на них на всех влияет. Мы проводим процедуру факторного анализа, и после этого в нашей матрице появляется еще один столбец – столбец без названия. Этот загадочный параметр очень хорошо коррелирует со всеми (кроме общительности и тревожности). После некоторого творческого раздумья психолог приходит к единственно возможной здесь интерпретации – загадочный параметр это есть интеллект. Он и влияет на все остальное, влияние его сильное, хотя и не стопроцентное.

Существуют методы факторного анализа, которые помогают выявить не один, а несколько факторов, которые влияют на другие параметры. Часто так бывает, конечно, что загадочный параметр оказывается не таким уж и загадочным, а полностью совпадает с одним из тех параметров, которые фиксировались. Но иногда бывает и так, что придется долго поломать голову прежде, чем удастся интерпретировать этот секретный фактор.

Факторный анализ применяется в основном учеными для глубокого понимания предмета исследования. При этом следует учитывать, что для точности результата необходимо довольно большое количество испытуемых: желательно, чтобы количество испытуемых в разы превышало количество параметров.

С помощью факторного анализа можно изучать качество психологических тестов. Если взять, например, какой-нибудь личностный опросник с несколькими параметрами, подвергнуть эти параметры факторному анализу, то может всплыть некий странный общий фактор, влияющий на все параметры. Значимого психологического смысла он может не иметь – это просто тенденция испытуемого отвечать так или иначе по формальному признаку (кто-то отвечает вдумчиво, кто-то склонен выбирать первые пункты из вариантов, кто-то последние). Большое влияние этого общего фактора может говорить о недостаточно качественной проработке заданий.

Литература

Ермолаев О. Ю. Математическая статистика для психологов: Учебник. - 2-е изд. испр. - М.: МПСИ, Флинта, 2003. - 336 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Математическая статистика -- наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей позволяющую оценить надежность и точность выводов делаемых на основании ограниченного статистического материала (напр. оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании).

В теории вероятностей рассматриваются случайные величины с заданным распределением или случайные эксперименты свойства которых целиком известны. Предмет теории вероятностей -- свойства и взаимосвязи этих величин (распределений).

Но часто эксперимент представляет собой черный ящик выдающий лишь некие результаты по которым требуется сделать вывод о свойствах самого эксперимента. Наблюдатель имеет набор числовых (или их можно сделать числовыми) результатов полученных повторением одного и того же случайного эксперимента в одинаковых условиях.

При этом возникают например следующие вопросы: Если мы наблюдаем одну случайную величину -- как по набору ее значений в нескольких опытах сделать как можно более точный вывод о ее распределении? математический статистика дисперсия гистограмма

Примером такой серии экспериментов может служить социологический опрос набор экономических показателей или наконец последовательность гербов и решек при тысячекратном подбрасывании монеты. Все вышеприведенные факторы обуславливают актуальность и значимость тематики работы на современном этапе направленной на глубокое и всестороннее изучение основных понятий математической статистики.

1. Предмет и метод математической статистики

В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел многомерный статистический анализ анализ функций (процессов) и временных рядов статистику объектов нечисловой природы. Существенная часть статистики математической основана на вероятностных моделях. Выделяют общие задачи описания данных оценивания и проверки гипотез. Рассматривают и более частные задачи связанные с проведением выборочных обследований восстановлением зависимостей построением и использованием классификаций (типологий) и др.

Для описания данных строят таблицы диаграммы иные наглядные представления например корреляционные поля. Вероятностные модели обычно не применяются. Некоторые методы описания данных опираются на продвинутую теорию и возможности современных компьютеров. К ним относятся в частности кластер-анализ нацеленный на выделение групп объектов похожих друг на друга и многомерное шкалирование позволяющее наглядно представить объекты на плоскости в наименьшей степени исказив расстояния между ними.

Методы оценивания и проверки гипотез опираются на вероятностные модели порождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается что изучаемые объекты описываются функциями распределения зависящими от небольшого числа (1-4) числовых параметров. В непараметрических моделях функции распределения предполагаются произвольными непрерывными. В статистике математической оценивают параметры и характеристики распределения (математическое ожидание медиану дисперсию квантили и др.) плотности и функции распределения зависимости между переменными (на основе линейных и непараметрических коэффициентов корреляции а также параметрических или непараметрических оценок функций выражающих зависимости) и др. Используют точечные и интервальные (дающие границы для истинных значений) оценки.

В математической статистике есть общая теория проверки гипотез и большое число методов посвященных проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках) о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций о симметрии распределения и др.

Большое значение имеет раздел математической статистики связанный с проведением выборочных обследований со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез.

Задачи восстановления зависимостей активно изучаются более 200 лет с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов. В настоящее время наиболее актуальны методы поиска информативного подмножества переменных и непараметрические методы.

Разработка методов аппроксимации данных и сокращения размерности описания была начата более 100 лет назад когда К. Пирсон создал метод главных компонент. Позднее были разработаны факторный анализ и многочисленные нелинейные обобщения.

Различные методы построения (кластер-анализ) анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без) автоматической классификации и др.

Математические методы в статистике основаны либо на использовании сумм (на основе Центральной Предельной Теоремы теории вероятностей) или показателей различия (расстояний метрик) как в статистике объектов нечисловой природы. Строго обоснованы обычно лишь асимптотические результаты. В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчетов так и для имитационного моделирования (в частности в методах размножения выборок и при изучении пригодности асимптотических результатов).

1.1 Основные понятия математической статистики

Исключительно важную роль в анализе многих психолого-педагогических явлений играют средние величины, представляющие собой обобщенную характеристи ку качественно однородной совокупности по определенному количественно му признаку. Нельзя, например, вычислить среднюю специальность или среднюю национальность студентов вуза, так как это качест венно разнородные явления. Зато можно и нужно определить в среднем числовую характеристику их успеваемости (средний балл), эффек тивности методических систем и приемов и т. д.

В психолого-педагогических исследованиях обычно применяются различные виды средних величин: средняя арифметическая, сред няя геометрическая, медиана, мода и другие. Наиболее распространенными являются средняя арифметическая, медиана и мода.

Средняя арифметическая применяется в тех случаях, когда между определяю щим свойством и данным признаком имеется прямо пропорциональная зави симость (например, при улучшении показателей работы учебной группы улучшаются показатели работы каждого ее члена).

Средняя арифметическая представляет собой частное от деления сум мы величин на их число и вычисляется по формуле:

Размещено на http://www.allbest.ru/

где Х - средняя арифметическая; X1, X2, Х3 ... Хn - результаты отдельных наблюдений (приемов, действий),

n - количество наблюдений (приемов, действий),

Сумма результатов всех наблюдений (приемов, действий).

Медианой (Ме) называется мера среднего положения, характеризующая значение признака на упорядоченной (построенной по признаку возрастания или убывания) шкале, которое соответствует середине исследуемой совокупности. Медиана может быть определена для порядковых и количественных признаков. Место расположения этого значения определяется по формуле:

Место медианы = (n + 1) / 2

Например. По результатам исследования установлено, что:

На “отлично” учатся - 5 человек из участвующих в эксперименте;

На “хорошо” учатся - 18 человек;

На “удовлетворительно” - 22 человека;

На “неудовлетворительно” - 6 человек.

Так как всего в эксперименте принимало участие N = 54 человека, то середина выборки равна человек. Отсюда делается вывод, что больше половины обучающихся учатся ниже оценки “хорошо”, то есть медиана больше “удовлетворительно”, но меньше “хорошо”.

Мода (Мо) - наиболее часто встречающееся типичное значение признака среди других значений. Она соответствует классу с максимальной частотой. Этот класс называется модальным значением.

Например.

Если на вопрос анкеты: “укажите степень владения иностранным языком”, ответы распределились:

1 - владею свободно - 25

2 - владею в достаточной степени для общения - 54

3 - владею, но испытываю трудности при общении - 253

4 - понимаю с трудом - 173

5 - не владею - 28

Очевидно, что наиболее типичным значением здесь является - “владею, но испытываю трудности при общении”, которое и будет модальным. Таким образом, мода равна - 253.

Важное значение при использовании в психолого-педагогическом исследовании математических методов уделяется расчету дисперсии и среднеквадратических (стандартных) отклонений.

Дисперсия равна среднему квадрату отклонений значения варианты от среднего значения. Она выступает как одна из характеристик индивидуальных результатов разброса значений исследуемой переменной (например, оценок учащихся) вокруг среднего значения. Вычисление дисперсии осуществляется путем определения: отклонения от среднего значения; квадрата указанного отклонения; суммы квадратов отклонения и среднего значения квадрата отклонения.

Значение дисперсии используется в различных статистических расчетах, но не имеет непосредственного наблюдаемого характера. Величиной, непосредственно связанной с содержанием наблюдаемой переменной, является среднее квадратическое отклонение.

Среднее квадратичное отклонение подтверждает типичность и показательность средней арифметической, отражает меру колебания численных значений признаков, из которых выводится средняя величина. Оно равно корню квадратному из дисперсии и определяется по формуле:

(2)Размещено на http://www.allbest.ru/

где: - средняя квадратическая. При малом числе наблюдения (действий) - менее 100 - в значении формулы следует ставить не “N”, а “N - 1”.

Средняя арифметическая и средняя квадратическая являются основны ми характеристиками полученных результатов в ходе исследования. Они позволяют обобщить данные, сравнить их, установить преимущества одной психолого-педагогической системы (программы) над другой.

Среднее квадратическое (стандартное) отклонение широко применяется как мера разброса для различных характеристик.

Оценивая результаты исследования важно определить рассеивание случайной величины около среднего значения. Это рассеивание описывается с помощью закона Гауса (закона нормального распределения вероятности случайной величины). Суть закона заключается в том, что при измерении некоторого признака в данной совокупности элементов всегда имеют место отклонения в обе стороны от нормы вследствие множества неконтролируемых причин, при этом, чем больше отклонения, тем реже они встречаются.

При дальнейшей обработке данных могут быть выявлены: коэффициент вариации (устойчивости) исследуемого явления, представляющий собой процентное отношение среднеквадратического отклонения к средней ариф метической; мера косости, показывающая, в какую сторону направлено преимущественное число отклонений; мера крутости, которая показывает степень скопления значений случайной величины около среднего и др. Все эти статистические данные помогают более полно выявить признаки изучаемых явлений.

Меры связи между переменными. Связи (зависимости) между двумя и более переменными в статистике называют корреляцией. Она оценивается с помощью значения коэффициента корреляции, который является мерой степени и величины этой связи.

Коэффициентов корреляции много. Рассмотрим лишь часть из них, которые учитывают наличие линейной связи между переменными. Их выбор зависит от шкал измерения переменных, зависимость между которыми необходимо оценить. Наиболее часто в психологии и педагогике применяются коэффициенты Пирсона и Спирмена.

1.2 Основные понятия выборочного метода

Пусть -- случайная величина наблюдаемая в случайном эксперименте. Предполагается что вероятностное пространство задано (и не будет нас интересовать).

Будем считать что проведя раз этот эксперимент в одинаковых условиях мы получили числа -- значения этой случайной величины в первом втором и т.д. экспериментах. Случайная величина имеет некоторое распределение которое нам частично или полностью неизвестно.

Рассмотрим подробнее набор называемый выборкой.

В серии уже произведенных экспериментов выборка -- это набор чисел. Но если эту серию экспериментов повторить еще раз то вместо этого набора мы получим новый набор чисел. Вместо числа появится другое число -- одно из значений случайной величины. То есть (и и и т.д.) -- переменная величина которая может принимать те же значения что и случайная величина и так же часто (с теми же вероятностями). Поэтому до опыта -- случайная величина одинаково распределенная с а после опыта -- число которое мы наблюдаем в данном первом эксперименте т.е. одно из возможных значений случайной величины.

Выборка объема -- это набор из независимых и одинаково распределенных случайных величин («копий ») имеющих как и распределение.

Что значит «по выборке сделать вывод о распределении»? Распределение характеризуется функцией распределения плотностью или таблицей набором числовых характеристик -- и т.д. По выборке нужно уметь строить приближения для всех этих характеристик.

1.3 Выборочное распределение

Рассмотрим реализацию выборки на одном элементарном исходе -- набор чисел. На подходящем вероятностном пространстве введем случайную величину принимающую значения с вероятностями по (если какие-то из значений совпали сложим вероятности соответствующее число раз).

Распределение величины называют эмпирическим или выборочным распределением. Вычислим математическое ожидание и дисперсию величины и введем обозначения для этих величин:

Точно так же вычислим и момент порядка

В общем случае обозначим через величину

Если при построении всех введенных нами характеристик считать выборку набором случайных величин то и сами эти характеристики -- -- станут величинами случайными. Эти характеристики выборочного распределения используют для оценки (приближения) соответствующих неизвестных характеристик истинного распределения.

Причина использования характеристик распределения для оценки характеристик истинного распределения (или) -- в близости этих распределений при больших.

Рассмотрим для примера подбрасываний правильного кубика. Пусть -- количество очков выпавших при -м броске. Предположим что единица в выборке встретится раз двойка -- раз и т.д. Тогда случайная величина будет принимать значения 1 6 с вероятностями соответственно. Но эти пропорции с ростом приближаются к согласно закону больших чисел. То есть распределение величины в некотором смысле сближается с истинным распределением числа очков выпадающих при подбрасывании правильного кубика.

1.4 Эмпирическая функция распределения гистограмма

Поскольку неизвестное распределение можно описать например его функцией распределения построим по выборке «оценку» для этой функции.

Определение 1. Эмпирической функцией распределения построенной по выборке объема называется случайная функция при каждом равная

Напоминание: Случайная функция

называется индикатором события. При каждом это -- случайная величина имеющая распределение Бернулли с параметром

Иначе говоря, при любом значение равное истинной вероятности случайной величине быть меньше оценивается долей элементов выборки меньших.

Если элементы выборки упорядочить по возрастанию (на каждом элементарном исходе) получится новый набор случайных величин называемый вариационным рядом:

Элемент называется -м членом вариационного ряда или -й порядковой статистикой.

Эмпирическая функция распределения имеет скачки в точках выборки величина скачка в точке равна где -- количество элементов выборки совпадающих с.

Можно построить эмпирическую функцию распределения по вариационному ряду:

Другой характеристикой распределения является таблица (для дискретных распределений) или плотность (для абсолютно непрерывных). Эмпирическим или выборочным аналогом таблицы или плотности является так называемая гистограмма. Гистограмма строится по группированным данным. Предполагаемую область значений случайной величины (или область выборочных данных) делят независимо от выборки на некоторое количество интервалов (не обязательно одинаковых). Пусть -- интервалы на прямой называемые интервалами группировки. Обозначим для через число элементов выборки попавших в интервал:

На каждом из интервалов строят прямоугольник площадь которого пропорциональна. Общая площадь всех прямоугольников должна равняться единице. Пусть -- длина интервала. Высота прямоугольника над равна

Полученная фигура называется гистограммой.

Разобьем отрезок на 4 равных отрезка. В отрезок попали 4 элемента выборки в -- 6 в -- 3 и в отрезок попали 2 элемента выборки. Строим гистограмму (рис. 2). На рис. 3 -- тоже гистограмма для той же выборки но при разбиении области на 5 равных отрезков.

В курсе «Эконометрика» утверждается, что наилучшим числом интервалов группировки («формула Стерджесса») является

Здесь -- десятичный логарифм, поэтому

т.е. при увеличении выборки вдвое число интервалов группировки увеличивается на 1. Заметим что чем больше интервалов группировки, тем лучше. Но если брать число интервалов скажем порядка,то с ростом гистограмма не будет приближаться к плотности.

Справедливо следующее утверждение:

Если плотность распределения элементов выборки является непрерывной функцией, то при так что имеет место поточечная сходимость по вероятности гистограммы к плотности.

Так что выбор логарифма разумен, но не является единственно возможным.

Размещено на Allbest.ru

...

Подобные документы

    Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.

    курсовая работа , добавлен 28.09.2011

    Предмет, методы и понятия математической статистики, ее взаимосвязь с теорией вероятности. Основные понятия выборочного метода. Характеристика эмпирической функции распределения. Понятие гистограммы, принцип ее построения. Выборочное распределение.

    учебное пособие , добавлен 24.04.2009

    Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция , добавлен 12.12.2011

    Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.

    реферат , добавлен 01.01.2011

    Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.

    контрольная работа , добавлен 20.02.2011

    Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа , добавлен 13.10.2009

    Статистическая обработка данных контроля времени (в часах) работы компьютерного класса в день. Полигон абсолютных частот. Построение графика эмпирической функции распределения и огибающей гистограммы. Теоретическое распределение генеральной совокупности.

    контрольная работа , добавлен 23.08.2015

    Обработка результатов информации по транспортным и технологическим машинам методом математической статистики. Определение интегральной функции нормального распределения, функции закона Вейбула. Определение величины сдвига к началу распределения параметра.

    контрольная работа , добавлен 05.03.2017

    Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.

    курсовая работа , добавлен 13.12.2014

    Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ЗАКОНЫ ИХ РАСПРЕДЕЛЕНИЯ.

Случайной называют такую величину, которая принимает значения в зависимости от стечения случайных обстоятельств. Различают дискретные и случайные непрерывные величины.

Дискретной называют величину, если она принимает счетное множество значений. (Пример: число пациентов на приеме у врача, число букв на странице, число молекул в заданном объеме).

Непрерывной называют величину, которая может принимать значения внутри некоторого интервала. (Пример: температура воздуха, масса тела, рост человека и т.д.)

Законом распределения случайной величины называется совокупность возможных значений этой величины и, соответствующих этим значениям, вероятностей (или частот встречаемости).

П р и м е р:

x x 1 x 2 x 3 x 4 ... x n
p р 1 р 2 р 3 р 4 ... p n
x x 1 x 2 x 3 x 4 ... x n
m m 1 m 2 m 3 m 4 ... m n

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

Во многих случаях наряду с распределением случайной величины или вместо него информацию об этих величинах могут дать числовые параметры, получившие название числовых характеристик случайной величины . Наиболее употребительные из них:

1 .Математическое ожидание - (среднее значение) случайной величины есть сумма произведений всех возможных ее значений на вероятности этих значений:

2 .Дисперсия случайной величины:


3 .Среднее квадратичное отклонение :

Правило “ТРЕХ СИГМ” - если случайная величина распределена по нормальному закону, то отклонение этой величины от среднего значения по абсолютной величине не превосходит утроенного среднего квадратичного отклонения

ЗАОН ГАУССА – НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

Часто встречаются величины, распределенные по нормальному закону (закон Гаусса). Главная особенность : он является предельным законом, к которому приближаются другие законы распределения.

Случайная величина распределена по нормальному закону, если ее плотность вероятности имеет вид:



M(X) - математическое ожидание случайной величины;

s - среднее квадратичное отклонение.

Плотность вероятности (функция распределения) показывает, как меняется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от значения самой величины:


ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Математическая статистика - раздел прикладной математики, непосредственно примыкающий к теории вероятностей. Основное отличие математической статистики от теории вероятностей состоит в том, что в математической статистике рассматриваются не действия над законами распределения и числовыми характеристиками случайных величин, а приближенные методы отыскания этих законов и числовых характеристик по результатам экспериментов.

Основными понятиями математической статистики являются:

1. Генеральная совокупность;

2. выборка;

3. вариационный ряд;

4. мода;

5. медиана;

6. процентиль,

7. полигон частот,

8. гистограмма.

Генеральная совокупность - большая статистическая совокупность, из которой отбирается часть объектов для исследования

(Пример: все население области, студенты вузов данного города и т.д.)

Выборка (выборочная совокупность) - множество объектов, отобранных из генеральной совокупности.

Вариационный ряд - статистическое распределение, состоящее из вариант (значений случайной величины) и соответствующих им частот.

Пример:

X,кг
m

x - значение случайной величины (масса девочек в возрасте 10 лет);

m - частота встречаемости.

Мода – значение случайной величины, которому соответствует наибольшая частота встречаемости. (В приведенном выше примере моде соответствует значение 24 кг, оно встречается чаще других: m = 20).

Медиана – значение случайной величины, которое делит распределение пополам: половина значений расположена правее медианы, половина (не больше) – левее.

Пример:

1, 1, 1, 1, 1. 1, 2, 2, 2, 3 , 3, 4, 4, 5, 5, 5, 5, 6, 6, 7 , 7, 7, 7, 7, 7, 8, 8, 8, 8, 8 , 8, 9, 9, 9, 10, 10, 10, 10, 10, 10

В примере мы наблюдаем 40 значений случайной величины. Все значения расположены в порядке возрастания с учетом частоты их встречаемости. Видно, что справа от выделенного значения 7 расположены 20 (половина) из 40 значений. Стало быть, 7 – это медиана.

Для характеристики разброса найдем значения, не выше которых оказалось 25 и 75% результатов измерения. Эти величины называются 25-м и 75-м процентилями . Если медиана делит распределение пополам, то 25-й и 75-й процентили отсекают от него по четвертушке. (Саму медиану, кстати, можно считать 50-м процентилем.) Как видно из примера, 25-й и 75-й процентили равны соответственно 3 и 8.

Используют дискретное (точечное) статистическое распределение инепрерывное (интервальное) статистическое распределение.

Для наглядности статистические распределения изображают графически в виде полигона частот или - гистограммы .

Полигон частот - ломаная линия, отрезки которой соединяют точки с координатами (x 1 ,m 1 ), (x 2 ,m 2 ), ..., или для полигона относительных частот – с координатами (x 1 ,р * 1 ), (x 2 ,р * 2 ), ...(Рис.1).


m m i /n f(x)

Рис.1 Рис.2

Гистограмма частот - совокупность смежных прямоугольников, построенных на одной прямой линии (Рис.2), основания прямоугольников одинаковы и равны dx , а высоты равны отношению частоты к dx , или р * к dx (плотность вероятности).

Пример:

х, кг 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4
m

Полигон частот

Отношение относительной частоты к ширине интервала носит название плотности вероятности f(x)=m i / n dx = p* i / dx

Пример построения гистограммы .

Воспользуемся данными предыдущего примера.

1. Расчет количества классовых интервалов

гдеn - число наблюдений. В нашем случае n = 100 . Следовательно:

2. Расчет ширины интервала :

,

3. Составление интервального ряда:

2.7-2.9 2.9-3.1 3.1-3.3 3.3-3.5 3.5-3.7 3.7-3.9 3.9-4.1 4.1-4.3 4.3-4.5
m
f(x) 0.3 0.75 1.25 0.85 0.55 0.6 0.4 0.25 0.05

Гистограмма

Методы математической статистики применяются, как правило, на всех этапах анализа исследовательских материалов для выбора стратегии решения задач по конкретным выборочным данным, оценивания полученных результатов. Для обработки материала использовались методы математической статистики. Математическая обработка материалов позволяет со всей четкостью выделить и оценить количественные параметры объективной информации, проанализировать и представить их в различных соотношениях и зависимостях. Они позволяют определить меру варьирования величин в собранных материалах, содержащих количественную информацию о некотором множестве случаев, часть из которых подтверждает предполагаемые связи, а часть не выявляет их, вычислить достоверность количественных различий между выделенными совокупностями случаев, получить другие математические характеристики, необходимые для верного истолкования фактов. Достоверность различий полученных в ходе исследования определялась по t-критерию Стьюдента.

Рассчитывались следующие величины.

1. Среднее арифметическое значение выборки.

Характеризует среднее значение рассматриваемой совокупности. Обозначим результаты измерений. Тогда:

где У- сумма всех значений, когда текущий индекс i изменяется от 1 до n.

2. Среднее квадратическое отклонение (стандартное отклонение) , характеризующее рассеивание, разбросанность рассматриваемой совокупности относительно среднего арифметического значения.

= (x max - x min)/ k

где - среднее квадратическое отклонение

хmaх - максимальное значение таблицы;

хmin - минимальное значение таблицы;

k - коэффициент

3. Стандартная ошибка средней арифметической или ошибка репрезентативности (m). Стандартная ошибка средней арифметической характеризует степень отклонения выборочной средней арифметической от средней арифметической генеральной совокупности.

Стандартная ошибка средней арифметической вычисляется по формуле:

где у - стандартное отклонение результатов измерений,

n - объем выборки. Чем меньше m тем выше стабильность, устойчивость результатов.

4. Критерий Стьюдента.

(в числителе - разность средних значений двух групп, в знаменателе - квадратный корень из суммы квадратов стандартных ошибок этих средних).

При обработке полеченных результатов исследования использовали компьютерную программу с пакетом Excel.

Организация исследования

Исследование проводилось нами по общепринятым правилам, и осуществлялось в 3 этапа.

На первом этапе был собран и проанализирован полученный материал по рассматриваемой проблеме исследования. Формировался предмет научного исследования. Проведенный анализ литературы на данном этапе позволил конкретизировать цель и задачи исследования. Проведено первичное тестирование техники бега на 30 м.<... class="gads_sm">

На третьем этапе был систематизирован полученный в результате научного исследования материал, обобщена вся имеющаяся информация по проблеме исследования.

Экспериментальное исследование проводилось на базе ГУО «Ляховичская средняя школа», в общей сложности выборка составила 20 учащихся 6 классов (11-12 лет).

Глава 3. Анализ результатов исследования

В результате педагогического эксперимента нами были выявлен исходный уровень техники бега на 30 м учащихся в контрольной и экспериментальной группах (Приложения 1-2). Статистическая обработка полученных результатов позволила получить следующие данные (таблица 6).

Таблица 6. Исходный уровень качества бега

Как видно из таблицы 6 среднее количество баллов у спортсменов контрольной и экспериментальной группы статистически не отличаются, в экспериментальной группе средний бал составил 3,6 балла, а в контрольной 3,7 балла. T-критерий в обеих группах tэмп=0,3; Р?0,05, при tкрит=2,1; Результаты исходного тестирования показали, что показатели не зависят от обученности и носят случайный характер. По первоначальному тестированию показатели качества бега у контрольной группы немного превышали показатели экспериментальной группы. Но не было выявлено статистически достоверных различий в группах, что является доказательством идентичности учащихся контрольной и экспериментальной групп по технике бега 30м.

За время эксперимента в обеих группах улучшились показатели, характеризующие эффективность техники бега. Однако это улучшение в разных группах участников эксперимента носило разный характер. В результате обучения выявлен закономерный небольшой прирост показателей в контрольной группе (3,8 балла). Как видно из Приложения 2 в экспериментальной группе был выявлен большой прирост показателей. Учащиеся занимались по предложенной нами программе, что достоверно улучшило показатели.

Таблица 7. Изменения качества бега у испытуемых экспериментальной группы

В ходе эксперимента мы установили, что повышенные нагрузки в экспериментальной группе дали значительные улучшения развития быстроты, нежели в контрольной группе.

В подростковом возрасте целесообразно развивать быстроту путем преимущественного использования средств физического воспитания, направленных на повышение частоты движений. В возрасте 12-15 лет повышаются скоростные способности, в результате применения главным образом скоростно-силовых и силовых упражнений которые использованы нами в процессе проведения уроков физической культуры и внеклассных занятий спортивной секции баскетбола и лёгкой атлетики.

При проведении занятий в экспериментальной группе велась строгая этапность усложнения и двигательного опыта. Своевременно велась работа над ошибками. Как показал анализ фактических данных, экспериментальная методика обучения оказало существенное изменение на качество выполнения техники бега (tэмп=2,4). Анализ полученных результатов в экспериментальной группе и сравнение их с данными, полученными в контрольной группе при использовании общепринятой методики обучения, дают основание утверждать, что предложенная нами методика повысит эффективность обучения.

Таким образом, на этапе совершенствования методики бега 30м в школе мы выявили динамику изменения показателей тестирования в экспериментальной и контрольной группе. После проведенного эксперимента качество выполнение приема повысилась в экспериментальной группе до 4,9 баллов (t=3,3; Р?0,05). К концу эксперимента качество владения техникой бега в экспериментальной группе оказалось выше, чем в контрольной группе.

Данным, полученным в результате эксперимента, свойственна изменчивость, которая может быть вызвана случайной ошибкой: погрешностью измерительного прибора, неоднородностью образцов и т.д. После проведения большого количества однородных данных экспериментатору необходимо их обработать для извлечения как можно более точной информации о рассматриваемой величине. Для обработки больших массивов данных измерений, наблюдений и т.п., которые могут быть получены при проведении эксперимента, удобно применять методы математической статистики .

Математическая статистика неразрывно связана с теорией вероятностей, но между этими науками есть существенное различие. Теория вероятностей использует уже известные распределения случайных величин , на основе которых рассчитываются вероятности событий, математическое ожидание т.д. Задача математической статистики – получить как можно более достоверную информацию о распределении случайной величины на основе экспериментальных данных.

Типичные направления математической статистики:

  • теория выборок;
  • теория оценок;
  • проверка статистических гипотез;
  • регрессионный анализ;
  • дисперсионный анализ.

Методы математической статистики

Методы оценки и проверки гипотез основываются на вероятностных и гиперслучайных моделях происхождения данных.

Математическая статистика оценивает параметры и функции от них, которые представляют важные характеристики распределений (медиану, математическое ожидание, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используются точечные и интервальные оценки.

Современная математическая статистика содержит большой раздел – статистический последовательный анализ , в котором допускается формирование массива наблюдений по одному массиву.

Математическая статистика также содержит общую теорию проверки гипотез и большое количество методов для проверки конкретных гипотез (например, о симметрии распределения, о значениях параметров и характеристик, о согласии эмпирической функции распределения с заданной функцией распределения, гипотеза проверки однородности (совпадение характеристик или функций распределения в двух выборках) и др.).

Проведением выборочных обследований , связанных с построением адекватных методов оценки и проверки гипотез, со свойствами разных схем организации выборок, занимается раздел математической статистики, имеющий большое значение. Методы математической статистики непосредственно использует следующие основные понятия.

Выборка

Определение 1

Выборкой называются данные, которые получены при проведении эксперимента.

Например, результаты дальности полета пули при выстреле одного и того же или группы однотипных орудий.

Эмпирическая функция распределения

Замечание 1

Функция распределения дает возможность выразить все важнейшие характеристики случайной величины.

В математической стаитистике существует понятие теоретической (заранее не известной) и эмпирической функции распределения.

Эмпирическая функция определяется по данным опыта (эмпирические данные), т.е. по выборке.

Гистограмма

Гистограммы используются для наглядного, но довольно приближенного, представления о неизвестном распределении.

Гистограмма представляет собой графическое изображение распределения данных.

Для получения качественной гистограммы придерживаются следующих правил :

  • Количество элементов выборки должно быть существенно меньше объема выборки.
  • Интервалы разбиения должны содержать достаточное число элементов выборки.

Если выборка очень большая зачастую интервал элементов выборки разбивают на одинаковые части.

Выборочное среднее и выборочная дисперсия

С помощью данных понятий можно получить оценку необходимых числовых характеристик неизвестного распределения, не прибегая к построению функции распределения, гистограммы и т.п.