Горизонт черной дыры. Размышление о горизонте событий и измененных состояниях сознания

Понятие «горизонт событий» - это граница, после пересечения которой даже свет не может вырваться за пределы черной дыры, он считается основной характеристикой данного космического объекта. Однако, мысль о том, что существует некий объект, гравитация которого не позволяет сбежать ни одной частице, несовместима с современной квантовой физикой.

В классической теории из черной дыры нет выхода, однако 2 года назад физик-теоретик Джо Полчински и его коллеги провели мысленный эксперимент, в ходе которого возник так называемый парадокс огненной стены или парадокс файрвола (firewall paradox).

В мысленном эксперименте исследователи представили, что случилось бы с космонавтом, который упал в черную дыру. Классическая теория рисует следующую картину: космонавт незаметно для себя пересекает горизонт событий, не подозревая о своей обреченности и невозможности вернуться. При этом космонавт находится в состоянии свободного падения и не испытывает перегрузок. Однако, по мере приближения к центру черной дыры, космонавта, как спагетти продавливает невероятная гравитация сверхмассивной сингулярности (бесконечно плотное ядро черной дыры). К счастью, страшную гибель космонавта никто не сможет увидеть – после пересечения горизонта событий, для внешнего наблюдателя он просто исчезнет в черной дыре, хотя сам космонавт не заметит перехода границы и продолжит полет к сингулярности.

Однако, более детальный анализ, проведенный командой Полчински, привел ученых к поразительному выводу. Оказывается, законы квантовой механики, которые управляют частицами в малых масштабах, могут полностью изменить ситуацию с полетом космонавтов. Квантовая теория превращает горизонт событий в весьма энергичную область – тот самый файрвол или стену огня. Файрвол сожжет космонавта дотла задолго до приближения к сингулярности.

Парадокс файрвола вызвал панику среди физиков, ведь опираясь на квантовую физику, он оспаривает общую теорию относительности Эйнштейна. Согласно этой теории, космонавт в свободном падении должен подчинятся законам физики, идентичным во всей Вселенной, то есть и возле черной дыры, и в пустом межгалактическом пространстве. Согласно теории Эйнштейна, горизонт событий должен быть ничем не примечательным местом, но никак не «огненной стеной».

Стивен Хокинг предлагает третий, соблазнительно простой, вариант, при котором вантовая механика и общая теория относительности остаются нетронутыми. Суть его идеи в том, что черные дыры просто не имеют горизонта событий и стены огня, поскольку квантовые эффекты вокруг черной дыры вызывают слишком сильные колебания пространства-времени. В результате вблизи черной дыры не могут существовать какие-либо резкие границы: будь-то горизонт событий или файервол.

Согласно новой теории Хокинга, при определенных условиях, сокращение видимого горизонта черной дыры может привести к тому, что она освободит всю захваченную ею материю и энергию

На месте горизонта событий, согласно теории Хокинга, существует размытая граница, некий видимый или мнимый горизонт. Это размытая граница, на которой лучи света, убегающие от черной дыры, начинают замедляться. В общей теории относительности свет пытается вырваться из черной дыры, но застревает на границе горизонта событий, где гравитация достаточно сильна, чтобы тормозить фотоны. Поэтому в теории относительности видимый горизонт и горизонт событий не выделяются в два отдельных явления. Тем не менее, Хокинг полагает, что эти два горизонта можно выделить. Например, если черная дыра поглотит большое количество материи, ее горизонт событий будет расти больше, чем видимый горизонт.

С другой стороны, черные дыры могут постепенно сокращаться, извергая так называемое излучение Хокинга. В этом случае, горизонт событий, теоретически, становится меньше видимого горизонта.

Новое предложение Хокинга не оспаривает тот факт, что горизонт событий существует. Ведь его отсутствие означает, что черных дыр вообще нет, ведь материя и информация может спокойно их покидать.

Тем не менее, новая теория Хокинга вызывает ряд вопросов. Прежде всего, получается, что черная дыра все же может «отпустить» материю и энергию, хоть и в искаженном виде. Так, например, в случае сокращения видимого горизонта до определенного малого размера, где эффекты квантовой механики и гравитации объединятся, черная дыра может исчезнуть. В этот момент, вся материя и энергия, накопленная черной дырой, освободятся, хотя и не в той форме, в какой они были захвачены. Также, под сомнением и существование сингулярности в центре черной дыры. Если Хокинг прав, материя внутри черной дыры лишь находится на «временном хранении» в видимом горизонте: она будет медленно двигаться внутрь черной дыры под воздействием гравитации, но никогда не будет сжата в бесконечно плотную сингулярность. При этом сохранится принцип горизонта событий: даже если информация о поглощенных черной дырой объектах вырвется за ее пределы через излучение Хокинга, она будет в совершенно ином виде и восстановить облик этих объектов будет невозможно.

Теория Хокинга – это попытка объединить противоречия квантовой и классической физики. Однако это будет не так просто. По словам самого Стивена Хокинга, в классической теории из черной дыры нет исхода, но квантовая теория позволяет энергии и информации выйти из черной дыры. Физик признает, что для полного объяснения процессов, протекающих в черной дыре, потребуется объединить гравитацию с другими фундаментальными силами природы, а эта задача остается нерешенной уже почти столетие.

Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Не правда ли парадоксальное заявление? Впрочем, вряд ли кто-то будет удивлён, если узнает, что эта новая гипотеза принадлежит легендарному физику-теоретику Стивену Хоккингу. В своё время с его лёгкой подачи чёрные дыры перестали считаться «чёрными» и «бессмертными».

Однако не так просто осознать эту идею. Для начала стоит разобраться, что вообще представляет собой горизонт событий.

Мы привыкли ассоциировать горизонт событий непосредственно с чёрными дырами. Непреступная граница, оболочка чёрных дыр. За этой оболочкой скрыто то, что неподвластно взгляду стороннего наблюдателя и даже существующим законам физики. Однако, горизонт событий в контексте чёрных дыр является лишь его частным проявлением. Другими словами, горизонт событий есть не только у чёрных дыр.

Общее определение горизонта событий представляет нам его как некую условную границу, которая разделят две совокупности событий. Существуют две разновидности горизонта событий – горизонт событий прошлого и будущего. Горизонт прошлого разделяет совокупности изменяемых и неизменяемых событий. Горизонт будущего разделяет несколько иные совокупности. Обо всех событиях первой совокупности наблюдатель может узнать когда-либо. Вторая же совокупность содержит события, о которых наблюдатель не узнает никогда.

Чёрная дыра обладает горизонтом событий прошлого. Подобный горизонт также будет наблюдать тот, кто движется с релятивистки равномерным ускорением. Горизонтом событий будущего обладает наблюдаемая часть Вселенной. Подробнее об этих «разновидностях» горизонта событий будет рассказано ниже.

Путешествие в бездну

Чёрные дыры являются крайне удобной площадкой для изысканий физиков теоретиков и иллюстрации многих труднообъяснимых явлений. Так в популярной науке известен классический пример, описывающий падение выдуманного звездолёта на чёрную дыру и наблюдение за ним стороннего наблюдателя. Этот пример наглядно описывает некоторые особенности горизонта событий.

Согласно теории относительности, для пассажира звездолёта путь до горизонта событий ничем не будет примечателен. Он будет двигаться с нарастающим ускорением, пока не достигнет скорости света на горизонте событий. Иную картину увидит наблюдатель. Для него растягивающийся силуэт звездолёта будет замедляться по мере приближения к чёрной дыре. У самого горизонта событий он и вовсе застынет навеки.

Науке неизвестно, что произойдёт со звездолётом после пересечения этой черты. Вероятнее всего, с точки зрения пассажира звездолёта, преодолев световой барьер, он продолжит своё ускорение. Стоит отметить, что вся масса чёрной дыры должна быть сосредоточена в её центре, бесконечно мелкой сингулярности. Поэтому остальное пространство чёрной дыры является просто областью, ограниченной горизонтом событий.

Разный взгляд на пустоту

Другими словами, термин «радиус чёрной дыры» не обозначает радиус материального объекта. Это радиус области, внутри которой не действует известная физика. Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр.

В данном случае интересная особенность горизонта событий заключается в том, что с точки зрения наблюдателя никакой сингулярности не существует. Всё то, что попало в чёрную дыру для нашего (внешнего) мира навсегда останется у края горизонта событий. То есть, с нашей точки зрения, вся масса чёрной дыры сосредоточена не в центре, а по периферии. Звездолёт не только не достигнет центра, но и не пересечёт границы чёрной дыры.

Для тех же, кто попал в чёрную дыру, пересечение горизонта событий пролетит со скоростью света. Путешествие до сингулярности будет проходить при ещё больших нарастающих скоростях, что также нарушает законы нашей физики. В конечном итоге любое тело, угодившее в чёрную дыру, неизбежно станет частью сингулярности. По её меркам пройдёт сравнительно небольшое время, тогда как за пределами дыры, известная для нас, Вселенная может исчезнуть. Ведь, согласно модели Хоккинга, испарения чёрной дыры происходит за невообразимо короткий срок.

Масштабы горизонта событий

Горизонт событий, наряду с сингулярностью, является основным «атрибутом» чёрной дыры. Его радиус, называемый также гравитационным радиусом, или радиусом Шварцшильда, линейно зависит от её массы. Можно практически в уме оценить радиус любой чёрной дыры, умножив три километра на отношение её массы к массе солнца. Так чёрная дыра с земной массой будет размером с вишню. В тоже время размер сверхмассивных чёрных дыр будет исчисляться миллионами и даже миллиардами километров.

Очевидно, что при таких колоссальных размерах, такие объекты не будут обладать столь губительными приливными силами. Поэтому мысль о том, что любое тело разорвёт ещё до подхода к чёрной дыре, является заблуждением. Получается, теоретически можно допустить путешествие человека вглубь чёрной дыры, о чём было рассказано выше.

Самым интересным является то, что размер чёрной дыры с массой наблюдаемой Вселенной в разы меньше размера самой Вселенной. Собственно, тут стоит вспомнить, оговоренную ранее разновидность горизонта событий, как завесу, окутывающую нашу наблюдаемую Вселенную. То есть, то, что, находится за горизонтом событий Вселенной, скрыто от наблюдателя подобно звездолёту, находящемуся в чёрной дыре.

Вселенский горизонт событий

Горизонт событий наблюдаемой Вселенной является одним из трёх параметров, характеризующих её границы. Кроме него также существует сфера Хаббла и горизонт частиц. Радиус сферы Хаббла равен расстоянию, который прошёл свет за время жизни Вселенной – т.е. около 14 млрд. световых лет. Однако, в силу того, что наша Вселенная не статична, сфера Хаббла не является её границей. Реальную границу характеризует горизонт частиц, который учитывает расширение Вселенной. Радиус горизонта частиц примерно в три раза больше горизонта сферы Хаббла. Он равен фактическому расстоянию, который преодолел самый далёкий объект, успевший испустить свет до наблюдателя.

Горизонт событий несколько отличен от горизонта частиц. Он отсеивает от нас те события в нашей Вселенной, о которых мы не узнаем никогда. Его радиус на несколько миллиардов световых лет больше радиуса сферы Хаббла.

Все эти три параметра непосредственно зависят от самого наблюдателя. В этом и состоит одно из отличий горизонта событий чёрной дыры от горизонта событий Вселенной. То есть, горизонт событий чёрной дыры не зависит от местоположения различных наблюдателей. Напротив, каждый наблюдатель, в зависимости от своего местоположения, будет видеть границу Вселенной по-своему. Это похоже на то, как будет различаться горизонт с разных точек поверхности планеты.

Горизонт Риндлера

Горизонт событий также существует для наблюдателя, который находится в состоянии релятивистски равноускоренного движения. Такое тело будут сопровождать два горизонта, которые во многом схожи с горизонтом чёрных дыр. К примеру, этот горизонт будет также обладать излучением, аналогичному излучению испаряющихся чёрных дыр.

Этот горизонт также называется горизонтом Риндлера. Он назван в честь его первооткрывателя Вольфганта Риндлера, который, к слову, придумал сам термин «горизонт событий».

Видимый горизонт

Итак, теперь мы имеем представление о том, каким видит горизонт событий современная наука. Казалось бы, каким образом Стивен Хоккинг решил опровергнуть его существование. На самом деле новая гипотеза создана, чтобы разрешить некоторые противоречия, связанные с чёрными дырами.

Зарождающаяся квантовая теория уже превратила чёрные дыры в объекты, способные излучать. Согласно той же квантовой модели, горизонт событий для нашего звездолёта теперь не будет просто условной границей. Обладая большой концентрацией энергии, «новый» квантовый горизонт событий полностью уничтожит звездолёт. Однако, как мы помним, согласно принципам теории относительности, звездолёт должен беспрепятственно пройти этот рубеж.

Поэтому было решено внести некоторые коррективы в устоявшиеся представления о горизонте событий. Теперь горизонт событий лишь временно удерживает то, что получил. По мере испарения чёрной дыры информация вернётся за горизонт, хоть и в искаженном виде. Однако даже сам Хоккинг называет свою идею не больше, чем и гипотезой. Он подчеркивает, что учёным ещё многое нужно познать, прежде чем с уверенностью говорить о горизонте событий.

Герой фантастики

В любом случае загадочность и неизведанность горизонта событий ещё долго будет будоражить умы фантастов. Чаще всего горизонт событий фигурирует как ворота в отдалённое пространство, время или измерение. Фантасты действительно вольны приписывать ему многие свойства, ведь пока что с ними неспособна поспорить наука.

Наиболее удачной в этом плане можно выделить кинокартину Кристофера Нолана «Интерстеллар».

Над сценарием и проработкой графики картины трудился не безызвестный физик-теоретик Кип Торн. Это резко выделяет фильм на фоне большинства фантастических картин. Вряд ли кто-то может сравниться с реалистичностью «прорисовки» сверхмассивной чёрной дыры, проделанной в «Интерстелларе».

Для тех, кто хочет почувствовать себя героем «Интерстлеллара» создано . Онлайн модель чёрной дыры имитирует искривление пространства вокруг чёрной дыры. Программа позволяет пронаблюдать за горизонтом событий в различных ракурсах и приближениях. Под саундрек «Интерстеллара» можно совершить погружение к горизонту событий, наблюдая за изменением не только космических красот или аккреционного диска, но и координатной сетки.

Почти сто лет назад американский астроном Весто Слайфер (Vesto Slipher, 1875-1969) обнаружил, что линии в спектрах излучения большинства галактик смещены в красную сторону. В то время космологических теорий, которые могли бы объяснить этот феномен, еще не было, равно как не существовало и общей теории относительности (ОТО). Слайфер истолковал свои наблюдения, опираясь на эффект Доплера. Получилось, что галактики удаляются от нас, причем с довольно большими скоростями.

Позже Эдвин Хаббл (Edwin Hubble, 1889-1953) обнаружил, что чем дальше галактика находится от нас, тем больше наблюдаемый сдвиг спектральных линий в красную сторону (то есть красное смещение) и, следовательно, с тем большей скоростью она улетает от Земли. Сейчас данные по красному смещению получены для десятков тысяч галактик, и почти все они удаляются от нас. Именно это открытие и позволило ученым заговорить о расширении Вселенной и о нестационарности нашего мира.

Альберт Эйнштейн в поиске решений своих знаменитых уравнений, описывающих сосуществование энергии и гравитации (то есть материи и кривизны четырехмерного пространства-времени), пренебрег фактом расширения и представил миру в первых публикациях по ОТО стационарную, бесконечную и неизменную Вселенную. Более того, когда российский математик и геофизик А.А. Фридман (1888-1925) нашел «расширяющиеся» и «пульсирующие» решения для уравнений, Эйнштейн долго не признавал такой сценарий развития Вселенной и правомочность найденных решений. Однако дальнейшие математические исследования уравнений, которые называются системой уравнений Гильберта - Эйнштейна и описывают весь мир в целом, показали, что Александр Фридман прав и Вселенная совсем не обязана быть бесконечной и стационарной.

Теория и эксперимент стали соответствовать друг другу, а заодно выяснилось, что удаляющиеся галактики не движутся, подобно тому, как мы ходим по комнате или как Луна вращается вокруг Земли, а удаляются от нас из-за расширения самого пространства. Обычно это иллюстрируют с помощью растягивающейся резиновой пленки или воздушного шарика. Здесь, впрочем, тоже есть некий нюанс, который часто сбивает многих с толку. Если нарисовать галактику на шарике и начать его надувать, то ее изображение тоже будет увеличиваться. При расширении Вселенной такого не происходит. Галактика - это гравитационно-связанная система, она не участвует в космологическом расширении. Так что в иллюстрации с шариком галактику лучше не рисовать на нем, а приклеить «ее» к шарику в одной точке. Но поскольку на самом деле галактики ни к чему не приклеены и могут двигаться в пространстве, то еще лучше представлять их как капли воды на поверхности раздувающегося шарика. Капли-галактики в этом случае не расширяются, но могут свободно перемещаться по нему с некоторой собственной скоростью.

Для более наглядного представления процесса расширения удобно ввести систему отсчета, нарисовав на шаре координатную сетку. Если бы галактики были «приклеены» к такому раздувающемуся шарику-пространству, то их координаты не изменялись бы, и расширение сводилось бы лишь к модификации свойств самой системы координат. Однако реальное расстояние между галактиками, измеряемое, например, с помощью линейки, света или радиолокатора, при этом все же увеличивается, поскольку размер линейки не изменяется при космологическом расширении, а скорость света и радиоволн не зависит от того, насколько растянулась пленка пространства-шарика. В этом плане наше пространство совсем не похоже на резиновую пленку, утончающуюся при растяжении и заставляющую упругие волны бегать по ней с возрастающей скоростью.

Согласно ОТО пространство расширяется, рождаясь как бы из ничего, в силу тех законов, которым оно подчиняется. Именно этот процесс, с учетом свойств всего того, что находится в пространстве, и описывают уравнения Гильберта - Эйнштейна. Поведение света, атомов, молекул, твердых тел, жидкостей и газов слабо зависит от локальной кривизны пространства-времени и существенно изменяется только в особо сильных гравитационных полях, наподобие тех, что встречаются вблизи черных дыр. В большей же части Вселенной, как полагают ученые, основные процессы происходят почти так же, как и на Земле, и получается, что галактики вполне реально удаляются друг от друга из-за расширения пространства, в котором они находятся. Космические корабли движутся, а свет распространяется по тому пространству, которое есть, и если его станет больше, это будет заметно, хотя бы по тому времени, которое им придется затратить, путешествуя из одной галактики в другую.

Превращения фотона

Свет всегда излучается с некоторой определенной длиной волны и энергией кванта. Но, распространяясь в расширяющейся Вселенной, он как бы растягивается, «краснеет». В случае сжатия Вселенной наблюдался бы обратный эффект - посинение. Если когда-то давно какая-либо галактика излучила фотон с некой длиной волны, а сейчас мы его видим, как фотон с другой длиной волны, то, исходя из красного смещения, равного разности этих длин, поделенной на исходную длину волны фотона, можно сказать, во сколько раз за это время растянулась Вселенная. Для этого нужно к красному смещению прибавить единицу: если оно равно 2, то, значит, Вселенная растянулась в три раза с того момента, когда был излучен фотон.

Важно отметить, что при этом сравниваются размеры (космологи говорят о масштабном факторе) в момент излучения и в момент приема фотона. А вот то, что происходило между этими моментами, не так существенно: Вселенная могла раздаваться с постоянной скоростью, могла расширяться то быстрее, то медленнее, могла вообще в какой-то момент сжиматься. Важно только то, что за это время все космологические расстояния возросли в три раза. Именно об этом говорит красное смещение, равное 2.

«Растяжение» фотона по дороге от источника к наблюдателю принципиально отличается от обычного эффекта Доплера. Рассмотрим движущийся с некоторой скоростью космический корабль, излучающий световые волны во все стороны. В этом случае наблюдатели, находящиеся впереди корабля, будут видеть посиневшие фотоны, то есть фотоны с большей энергией, а наблюдатели позади увидят покрасневшие фотоны с меньшей энергией. В сумме же энергия всех фотонов будет неизменной - сколько джоулей корабль излучил, столько же все наблюдатели и уловили. В космологии все по-другому. Излучающая во все стороны галактика для находящихся по разные стороны (но на равном расстоянии) наблюдателей будет выглядеть одинаково покрасневшей. Хотя с точки зрения обычной логики такое рассуждение кажется странным. И в этом плане космологическое красное смещение похоже на гравитационное, при котором фотоны краснеют, преодолевая поле притяжения испустившей их звезды.

Таково свойство Вселенной: кинетическая энергия всех частиц и волн - галактик, пылинок, протонов, электронов, нейтрино, фотонов и даже гравитационных волн уменьшается из-за расширения пространства. Это явление напоминает некоторые эффекты, наблюдаемые в нестационарных и незамкнутых системах. Известно, что если в системе фундаментальные константы зависят от времени, то энергия не сохраняется. Например, в мире с периодически изменяющейся гравитационной постоянной можно было бы поднимать груз, когда постоянная мала, и сбрасывать - когда велика. В результате получился бы выигрыш в работе, то есть стала бы возможной добыча энергии за счет непостоянства гравитационной постоянной.

В нашем мире от времени зависит сама метрика пространства, поскольку Вселенная расширяется. Находясь в нестационарном мире, можно констатировать, что энергия фотона в расширяющейся Вселенной падает. К счастью, все глобальные физические изменения у нас происходят крайне медленно и на обычной жизни никак не сказываются.

Линейка для Вселенной: Следует заметить, что любые связанные объекты не участвуют в космологическом расширении. Длина эталонного метра, находящегося в Палате мер и весов (и его современного лазерного аналога), не изменяется с течением времени. Именно поэтому и можно говорить об увеличении физического расстояния между галактиками, которое можно этим (постоянным!) метром измерить. Наиболее близкое к общепринятому пониманию - это так называемое собственное расстояние. Для его определения необходимо, чтобы множество наблюдателей, расположенных на линии, соединяющей две галактики, провели одновременное измерение расстояний, отделяющих их друг до друга, с помощью обычных линеек. Затем все эти данные надо передать в единый центр, где, сложив все результаты, можно будет определить, каким было расстояние во время измерения. Увы, но к моменту получения результата оно уже изменится за счет расширения. К счастью, астрономы научились по видимому блеску источников известной светимости вычислять собственное расстояние. Очень часто о расстоянии говорят в терминах красного смещения. Чем больше красное смещение, тем больше расстояние, причем для каждой космологической модели выведены свои формулы, связывающие эти две величины. Например, квазар GB1508+5714 с красным смещением 4,3 в общепринятой сейчас модели Вселенной расположен на расстоянии 23 миллиарда световых лет от нашей Галактики. Приходящий сегодня от него свет был испущен всего через миллиард лет после Большого взрыва и находился в пути около 13 миллиардов лет. Возраст Вселенной в этой модели составляет 14 миллиардов лет.

Скорость удаления галактики за счет космологического расширения может быть любой, в том числе и больше скорости света. Дело в том, что она при этом никуда не движется по пространству (ее координаты на раздувающемся шарике не меняются). Кинетическая энергия с этой скоростью не связана, поэтому при замедлении расширения Вселенной никакая энергия не выделяется. Галактика, разумеется, может иметь и «обычную» скорость, например, за счет гравитационного взаимодействия с другими галактиками. В космологии такую скорость называют пекулярной. Разумеется, в реальной жизни астрономы наблюдают суммарный эффект: галактика имеет красное смещение, связанное с космологическими процессами, а в дополнение к этому фотоны испытывают красное (или синее) смещение за счет эффекта Доплера, связанного с пекулярной скоростью. Иногда добавляется еще и гравитационное красное смещение, вызванное собственным полем тяжести светящегося объекта. Разделить эти три эффекта для индивидуального источника нелегко. Заметим, что для небольших во вселенском масштабе расстояний формула, связывающая красное смещение и скорость разбегания, совпадает с формулой для обычного эффекта Доплера. Порой это даже приводит к путанице, поскольку физика эффектов различна, и для больших расстояний формулы сильно отличаются. Красное смещение является очень удобной и общепринятой величиной для обозначения того, как далеко в пространстве и как давно во времени произошло то или иное событие, наблюдаемое сегодня земными астрономами.

Как же это возможно?

Часто даже профессионалы (физики, астрономы) на вопрос: «Можно ли наблюдать галактику, которая и в момент излучения ею света, и в момент приема ее сигнала на Земле удаляется от нас быстрее света?» - отвечают: «Конечно, нельзя!» Срабатывает интуиция, основанная на специальной теории относительности (СТО), которую один космолог метко назвал «тени СТО». Однако этот ответ неправильный. Оказывается, все-таки можно. В любой космологической модели скорость убегания линейно растет с расстоянием. Это связано с одним из важнейших принципов - однородностью Вселенной. Следовательно, существует такое расстояние, на котором скорость убегания достигает световой, а на больших расстояниях она становится сверхсветовой. Та воображаемая сфера, на которой скорость убегания равна световой, называется сферой Хаббла.

«Как же это возможно! - воскликнет читатель. - Неужели специальная теория относительности неверна?» Верна, но противоречия здесь нет. Сверхсветовые скорости - вполне реальны, когда речь идет не о переносе энергии или информации из одной точки пространства в другую. Например, солнечный зайчик может двигаться с любой скоростью, нужно только установить экран, по которому он бежит, подальше. СТО «запрещает» лишь передачу информации и энергии со сверхсветовой скоростью. А для переноса информации нужен сигнал, распространяющийся по пространству, - расширение самого пространства тут ни при чем. Так что в нашем примере про удаляющиеся галактики с теорией относительности все в полном порядке: со сверхсветовой скоростью они удаляются лишь от земного наблюдателя, а по отношению к окружающему пространству их скорость может вообще быть нулевой.

Удивительно то, что мы можем увидеть галактики, улетающие от нас быстрее света. Это возможно потому, что скорость расширения Вселенной не была постоянной. Если в какой-то период она уменьшится и свет сможет «добежать» до нашей Галактики, то мы увидим сверхсветовой источник. Этот пример прекрасно иллюстрирует то, что судьба фотона зависит от того, как ведет себя Вселенная во время его движения по ней. Допустим, что в момент излучения фотона галактика-источник удалялась от нас быстрее света. Тогда, хотя фотон и был испущен в нашу сторону, двигаясь по растягивающейся координатной сетке, он будет удаляться от нас за счет раздувания Вселенной. Если темп расширения уменьшается, то вполне возможно, что в какой-то момент скорость убегания (в том месте, где в это время находится фотон) станет меньше скорости света. Тогда свет начнет приближаться к нам и в конце концов может достичь нас. Сама галактика-источник в момент «разворота» света удаляется от нас все еще быстрее света (потому что она гораздо дальше фотона, а скорость растет с расстоянием). В момент приема фотона ее скорость тоже может быть больше световой (то есть она будет находиться за сферой Хаббла), но это не помешает ее наблюдению.

Большой бабах:

Во Вселенной, заполненной веществом (такая Вселенная всегда расширяется с замедлением), можно детально рассчитать все эти критические параметры. Если бы наш мир был таким, то галактики, для которых красное смещение больше 1,25, излучили принимаемый нами сейчас свет в тот момент, когда их скорость была больше скорости света. Современная сфера Хаббла для простейшей модели Вселенной, заполненной веществом (то есть без вклада темной энергии), имеет радиус, соответствующий красному смещению, равному 3. И все галактики с большим смещением начиная с момента излучения до нашего времени удаляются от нас быстрее света.

Граница наблюдений

В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая - в пространстве-времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах. Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых. Поскольку Вселенная имеет конечный возраст, то свет от далеких объектов просто еще не успел до нас дойти. Этот горизонт все время расширяется: время идет, и мы «дожидаемся» сигналов от все более и более далеких галактик. Горизонт частиц удаляется, он как бы убегает от нас со скоростью, которая может быть и больше скорости света. Благодаря этому мы видим все больше и больше галактик.

Заметим, что современное расстояние до «галактик на краю наблюдаемой Вселенной» нельзя определять как произведение скорости света на возраст Вселенной. В любой модели расширяющейся Вселенной это расстояние будет больше такого произведения. И это вполне понятно. Такое расстояние прошел сам свет, но Вселенная за это время успела расшириться, поэтому современное расстояние до галактики больше пути, пройденного светом, а в момент излучения это расстояние могло быть существенно меньше этого пути.

Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение.

Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению - 3х107. Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» ($10^{-43}$ секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента Большого взрыва общая теория относительности уже неприменима.

Горизонт событий - это поверхность в пространстве-времени. Такой горизонт возникает не во всякой космологической модели. Например, в описанной выше замедляющейся Вселенной горизонта событий нет - любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Можно представить себе это как межгалактическую трансляцию футбольного матча, происходящего в далекой галактике, сигнал которой мы никогда не получим. Почему такое возможно? Причин может быть несколько. Самая простая - модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва , но она не очень популярна в научных кругах. Зато есть другой вариант - расширение с ускорением. В таком случае некоторые нелюбители футбола попросту «убегут от света»: для них скорость расширения будет сверхсветовой.

Причуды черной королевы

Получается, что расширяющаяся Вселенная в чем-то похожа на страну Черной королевы, в которую попала Алиса в сказке Льюиса Кэрролла «Алиса в Зазеркалье». Там, чтобы устоять на месте, нужно было очень быстро бежать.

Допустим, что имеется галактика, обладающая большой собственной скоростью, направленной на нас. В этом случае в ее полное спектральное смещение будут вносить вклад два эффекта: космологическое красное расширение и синее смещение из-за эффекта Доплера за счет ее собственной скорости.

Первый вопрос такой: как будет изменяться расстояние до галактики с нулевым смещением спектра? Ответ: галактика будет от нас удаляться. Второй вопрос: представим себе галактику, расстояние до которой не изменяется из-за того, что ее собственная скорость полностью скомпенсировала эффект расширения (это как раз похоже на Алису, бегущую по стране Черной королевы). Галактика перемещается по нашей нарисованной координатной сетке с такой же скоростью, с какой сетка раздувается. Каким будет смещение спектра такой галактики? Ответ: смещение будет синим. То есть линии в спектре такой галактики будут смещены в сторону более коротких волн.

Побеждающая гравитация: Говоря о «большой Вселенной», часто полагают, что вещество равномерно распределено в пространстве. В первом приближении это верно. Однако не стоит забывать и о таких «возмущениях», как галактики и их скопления. Они образуются из первичных флуктуаций плотности. Если в равномерно распределенном веществе возникает шар с чуть большей плотностью, то, не учитывая эффектов, связанных с температурой, можно сказать, что шар начнет сжиматься, а плотность вещества - расти. В простейшей модели расширяющейся Вселенной, в которой вклад темной энергии равен нулю, ничего принципиально не изменяется. Любое возмущение плотности в такой пылевой Вселенной (для реального газа, а не пыли нужно, чтобы масса возмущения превзошла некоторую критическую величину - так называемую массу Джинса) приведет к тому, что вещество «выпадет» из расширения Вселенной и образует связанный объект. Если же вклад темной энергии не нулевой, то флуктуации плотности с самого начала должны иметь величину больше некоторой критической, иначе контраст плотности не успеет возрасти до нужного значения, и вещество не «выпадет» из Хаббловского потока. Подобно тому, как энергия фотона уменьшается за счет расширения, кинетическая энергия частичек пыли также будет уменьшаться со временем по мере расширения Вселенной. Из-за этого, пока флуктуация не отделилась полностью от общего расширения Вселенной, процесс «схлопывания» возмущения будет идти медленнее, чем без учета расширения. Вместо экспоненциального роста плотности будет наблюдаться степенной ее рост. Как только контраст плотности достигнет некоторого критического значения, флуктуация как бы «забудет» про расширение Вселенной.

Столь неожиданное поведение спектра излучения обусловлено тем, что здесь имеют место два физических эффекта, описывающихся разными формулами. Для источника, находившегося на сфере Хаббла, в момент излучения в простейшей модели замедляющейся Вселенной красное смещение равно 1,25, а скорость убегания равна скорости света. Значит, чтобы оставаться на неизменном расстоянии от нас, источник должен иметь собственную скорость, равную скорости света. А к собственным (пекулярным) скоростям надо применять формулу для релятивистского эффекта Доплера, которая для скорости источника, равной скорости света и направленной на нас, дает бесконечно большое синее смещение. Смещение спектральных линий за счет эффекта Доплера оказывается значительнее космологического и для галактик на меньших расстояниях. Таким образом, покоящийся источник будет иметь синее смещение, а звезда с нулевым смещением будет от нас удаляться.

Конечно, галактики не могут иметь околосветовые собственные скорости. Зато некоторые квазары и галактики с активными ядрами порождают джеты - струи вещества, бьющие на расстояния в миллионы световых лет. Скорость вещества в такой струе может быть близка к скорости света. Если струя направлена на нас, то за счет эффекта Доплера мы можем увидеть синее смещение. Кроме того, вещество должно вроде как приближаться к нам. Однако в свете того, что было написано выше, второй вывод не столь очевиден. Если источник находится достаточно далеко, то космологическое расширение все равно «унесет» вещество от нас, даже если его скорость очень близка к световой и струя видна нам «посиневшей». Только в космологии возникает такая абсурдная на первый взгляд ситуация, когда удаляющийся от нас объект имеет синее смещение. Например, квазар GB1508+5714, имеющий красное смещение 4,3, удаляется от нас в 1,13 раза быстрее света. Значит, вещество его джета, двигающееся в нашу сторону с большой собственной скоростью, удаляется от нас, так как скорость частиц не может превосходить скорость света.

Неизвестное будущее

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий. Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно - свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий: все ускоряющееся расширение «утянет» туда соответствующие им точки на координатной сетке.

Тут, кстати, хорошо видна разница между горизонтом частиц и горизонтом событий. Те галактики, что были под горизонтом частиц, так под ним и останутся, свет от них будет продолжать доходить. Но чем ближе становится скорость галактики к скорости света, тем больше времени нужно свету, чтобы дойти до нас, и все события в такой галактике покажутся нам растянутыми во времени. Условно говоря, если в такую галактику поместить часы, которые к моменту ее ухода за горизонт событий должны показывать 12 часов дня, то земным наблюдателям будет виден бесконечно замедляющийся ход этих часов. Сколько бы мы ни смотрели (теоретически такая галактика «с часами» никогда не исчезнет с нашего небосклона), мы никогда не увидим стрелки часов ровно на «двенадцати» - последний оборот она будет совершать бесконечно долго по нашим собственным часам. Подождав длительное время, мы увидим то, что происходило в галактике (по ее часам) в 11 ч 59 м, в 11 ч 59 м 59 с и так далее. Но то, что произошло на ней после «полудня», останется скрытым от нас навсегда. Это очень похоже на наблюдение за часами, падающими в черную дыру.

Аналогично, возможно, рассуждает и наблюдатель в этой далекой галактике. Он сейчас видит нашу галактику в ее прошлом, но с какого-то момента времени наша история станет недоступной для него, поскольку наши сигналы перестанут доходить до этой галактики. Забавно, что для общепринятого набора космологических параметров такие галактики находятся в общем-то недалеко. Их красное смещение должно быть более 1,8. То есть они могут находиться даже внутри сферы Хаббла, но послать им весточку человечество уже опоздало.

Вот такие парадоксальные с точки зрения здравого смысла явления происходят в нашей Вселенной. Их необычность связана с тем, что привычные понятия скорости, расстояния и времени в космологии приобретают несколько иной смысл. К сожалению, пока ученые не пришли к какому-то общему мнению о том, какой жизнью живет наша Вселенная и что с ней в принципе может случиться. Ведь даже специалистам расширение границ здравого смысла дается очень непросто.

Сергей Попов, кандидат физико-математических наук
Алексей Топоренский, кандидат физико-математических наук

  • Перевод

Изображение чёрной дыры. Несмотря на её тёмный цвет, считается, что все чёрные дыры были сформированы из обычной материи, но подобные иллюстрации не совсем точны

В апреле 2017 телескопы всего мира одновременно собрали данные по центральной чёрной дыре Млечного Пути. Из всех известных во вселенной ЧД та, что находится в центре Галактики - Стрелец A* - особенная. С нашей точки зрения её горизонт событий крупнейший из всех доступных нам ЧД. Он настолько большой, что телескопы, расположенные в разных местах Земли, должны были бы его увидеть, если бы посмотрели на него все одновременно. И хотя на комбинирование и анализ данных, полученных с разных телескопов, уйдут месяцы, к концу 2017 года мы должны получить наше первое изображение горизонта событий. Так как он должен выглядеть? Такой вопрос задаёт один из наших читателей, запутавшийся в иллюстрациях:

Разве горизонт событий не должен полностью окружать чёрную дыру на манер яичной скорлупы? Все художники рисуют чёрные дыры в виде разрезанных яиц, сваренных вкрутую. Почему горизонт событий не окружает чёрную дыру полностью?

Конечно, в интернете можно найти иллюстрации разного рода. Но какие из них правильные?



Рисунок с простым чёрным кругом и кольцом вокруг него - чрезмерно упрощённое изображние горизонта ЧД

Самый старый вид иллюстраций - простой чёрный диск, закрывающий собой весь свет позади него. Это имеет смысл, если вспомнить, что собой представляет ЧД: по сути, это собранная в одном месте масса настолько большой величины и настолько компактная, что скорость убегания с её поверхности превышает скорость света. Поскольку ничто не может двигаться так быстро, даже передача взаимодействий между частицами внутри ЧД, внутри ЧД схлопывается до сингулярности, а вокруг ЧД образуется горизонт событий. Из этого сферического участка космоса свет не может убежать, поэтому он и должен выглядеть с любой перспективы, как чёрный круг, наложенный на фон Вселенной.


ЧД - не просто масса над изолированным фоном, она оказывает гравитационные эффекты, растягивающие, увеличивающие и искажающие свет из-за гравитационного линзирования.

Но это ещё не вся история. Из-за гравитации ЧД увеличивают и искажают идущий с обратной стороны свет из-за эффекта гравитационного линзирования. Существует более точные и детальные иллюстрации внешнего вида ЧД, и у неё даже есть горизонт событий, размер которого правильно сопоставлен с кривизной пространства согласно ОТО.

К сожалению, и эти иллюстрации не лишены недостатков: они не учитывают материал, находящийся перед ЧД и аккреционный диск вокруг ЧД. Некоторые изображения включают и это.


Изображение активной ЧД, занятой аккрецией материи и ускорением её части в виде двух перпендикулярных струй, может описать ЧД в центре нашей Галактики правильно с многих точек зрения.

Из-за огромных гравитационных эффектов чёрные дыры формируют аккреционные диски в присутствии других источников материи. Астероиды, газовые облака, целые звёзды могут быть разорваны на части приливными силами, исходящими от таких массивных объектов, как чёрные дыры. Из-за сохранения углового момента и из-за столкновений между различными падающими в ЧД частицами, вокруг неё появиялется дискообразный объект, который разогревается и излучает. Во внутренних регионах частицы периодически падают в ЧД, что увеличивает её массу, а материал, находящийся перед ней, закрывает часть сферы, которую вы бы иначе видели.

Но сам по себе горизонт событий непрозрачен, и материю за ним вы видеть не должны.


У чёрной дыры в фильме Interstellar достаточно точно показан горизонт событий для особого класса вращающихся ЧД

Вас может удивить, что в голливудском фильме Interstellar ЧД изображена точнее, чем на многих профессиональных изображениях, созданных в НАСА или для него. Но даже среди профессионалов полно неправильных представлений о ЧД. ЧД не засасывают материю внутрь, а лишь оказывают гравитационное воздействие. ЧД не раздирают предметы из-за какой-то дополнительной силы - это делают простые приливные силы, когда одна часть падающего объекта оказывается ближе к центру, чем другая. И, что самое важное, ЧД редко существуют в «голом» состоянии, и часто находятся вблизи другой материи, как та, что существует в центре нашей Галактики.


Композитное изображение ЧД Стрелец А* в центре нашей Галактики, составленное из рентгеновских и инфракрасных лучей. Она обладает массой в 4 миллиона солнечных, и окружена горячим газом, излучающим в рентгеновском диапазоне

Памятуя обо всём этом, вспомним, что же это за изображения варёных яиц? Помните, что саму ЧД изобразить нельзя, поскольку она не испускает свет. Мы можем только наблюдать в определённом диапазоне длин волн и видеть сочетание света, обходящего ЧД сзади, изгибающегося вокруг и перед ней. И получающийся сигнал действительно будет напоминать варёное вкрутую яйцо, разрезанное пополам.


Некоторые из возможных сигналов горизонта событий ЧД, полученные в симуляциях проекта "Телескоп горизонта событий "

Всё дело в том, что именно мы фотографируем. Мы не можем наблюдать в рентгеновском диапазоне, ибо таких фотонов слишком мало. Мы не можем наблюдать в видимом свете, поскольку центр галактики для него непрозрачен. И мы не можем наблюдать в инфракрасном свете, поскольку атмосфера блокирует такие лучи. Но мы можем наблюдать в радиодиапазоне, и делать это по всему миру, одновременно, чтобы получить наилучшее из возможных разрешений.


Части «Телескопа горизонта событий» из одного полушария

Угловой размер ЧД в центре Галактики равен примерно 37 угловых микросекунд, а разрешение телескопа равно 15 угловых микросекунд, поэтому у нас должно получиться его увидеть! Большая часть радиочастотного излучения исходит из заряженных частиц материи, ускоряющихся вокруг ЧД. Мы не знаем, как будет ориентирован диск, будет ли там несколько дисков, будет ли это больше похоже на рой пчёл или на компактный диск. Мы также не знаем, предпочтёт ли он одну «сторону» ЧД, с нашей точки зрения, другой.


Пять различных симуляций в ОТО с использованием магнитогидродинамической модели аккреционного диска ЧД, и то, как будет выглядеть полученный сигнал

Мы ожидаем найти реальный горизонт событий, с определённым размером, блокирующий весь идущий из-за него свет. Мы также ожидаем наличие какого-либо сигнала, расположенного перед ним, неровность этого сигнала из-за беспорядка вокруг ЧД, и что ориентация диска относительно ЧД определит, что именно вы сможем увидеть.

Одна часть будет ярче, когда диск вращается в нашу сторону. Другая сторона тусклее, когда диск вращается от нас. Контур горизонта событий также может быть видимым из-за гравитационного линзирования. Что ещё важнее, расположение диска к нам ребром или плоскостью очень сильно будет влиять на характер полученного сигнала, как видно в первом и третьем квадратах рисунка ниже.


Расположение диска к нам ребром (два правых квадрата) или плоскостью (два левых квадрата) очень сильно будет влиять на то, какую ЧД мы увидим

Мы можем проверить и другие эффекты, а именно:

Обладает ли ЧД размером, предсказанным ОТО,
круглый ли горизонт событий (как предсказано), или вытянутый, или сплющенный у полюсов,
простирается ли радиоизлучение дальше чем мы думаем,

Или есть ещё какие-то отклонения от ожидаемого поведения. Это новая ступень физики, и мы находимся на грани её прямой проверки. Одно ясно: неважно, что увидит «Телескоп горизонта событий», мы обязательно узнаем что-то новое и прекрасное об одних из самых экстремальных объектов и условий во Вселенной!

·
Принцип эквивалентности ·
Мировая линия · Псевдориманова геометрия

См. также: Портал:Физика

Горизо́нт собы́тий - воображаемая граница в пространстве-времени , разделяющая те события (точки пространства-времени), которые можно соединить с событиями на светоподобной (изотропной) бесконечности светоподобными геодезическими линиями (траекториями световых лучей), и те события, которые так соединить нельзя. Так как обычно светоподобных бесконечностей у данного пространства-времени две: относящаяся к прошлому и будущему, то и горизонтов событий может быть два: горизонт событий прошлого и горизонт событий будущего . Упрощённо можно сказать, что горизонт событий прошлого разделяет события на изменяемые с бесконечности и на не изменяемые; а горизонт событий будущего отделяет события, о которых можно что-либо узнать, хотя бы в бесконечно отдалённой перспективе, от событий, о которых узнать ничего нельзя.

Горизонт событий обычно является трёхмерной гиперповерхностью . Необходимым и достаточным условием его существования является пространственноподобность хотя бы части светоподобной (изотропной) бесконечности. Следует отметить, что горизонт событий - понятие интегральное и нелокальное, так как в его определении участвует светоподобная бесконечность, то есть все бесконечно удалённые области пространства-времени. Поэтому в своей непосредственной окрестности горизонт событий ничем не выделен, что представляет проблему при численных расчётах в общей теории относительности. Для решения этой проблемы предложены некоторые близкие по свойствам к горизонту событий, но локально определяемые понятия: динамический горизонт, ловушечная поверхность и кажущийся горизонт (apparent horizon).

Существует также понятие горизонта событий отдельного наблюдателя . Он разделяет между собой события, которые можно соединить с мировой линией наблюдателя светоподобными (изотропными) геодезическими линиями, направленными соответственно в будущее - горизонт событий прошлого , и в прошлое - горизонт событий будущего , и события, с которыми этого сделать нельзя. Например, постоянно равномерно ускоренный наблюдатель в пространстве Минковского имеет свои горизонты прошлого и будущего (см. горизонт Риндлера).

Горизонт событий чёрной дыры

Горизонт событий будущего является необходимым признаком чёрной дыры как научно подтверждённого объекта. Горизонт событий сферически-симметричной чёрной дыры называется сферой Шварцшильда и имеет характерный размер, называемый гравитационным радиусом .

Находясь под горизонтом событий, любое тело будет двигаться только внутри чёрной дыры и не сможет вернуться обратно во внешнее пространство. C точки зрения наблюдателя, свободно падающего в чёрную дыру, свет может свободно распространяться как по направлению к чёрной дыре, так и от неё. Однако после пересечения горизонта событий даже свет, распространяющийся от наблюдателя наружу, никогда не сможет выйти за пределы горизонта. Предмет, попавший внутрь горизонта событий, в конце концов, вероятно, попадает в сингулярность , а перед этим разрывается вследствие высокого градиента силы притяжения чёрной дыры (приливных сил).

Энергия, возможно, может покидать чёрную дыру посредством т. н. излучения Хокинга , представляющего собой квантовый эффект. Если так, истинные горизонты событий в строгом смысле у сколлапсировавших объектов в нашей Вселенной не формируются. Тем не менее, так как астрофизические сколлапсировавшие объекты - это очень классические системы, то точность их описания классической моделью чёрной дыры достаточна для всех мыслимых астрофизических приложений .

Другие примеры горизонтов событий

  • Для наблюдателя, движущегося с постоянным собственным ускорением в пространстве Минковского (его скорость в инерциальной системе отсчёта приближается к скорости света, но не достигает её), существуют два горизонта событий, так называемые горизонты Риндлера (см. координаты Риндлера).
    Более того, для ускоренного наблюдателя существует аналог излучения Хокинга - излучение Унру .
  • Горизонт событий будущего существует для нас в нашей Вселенной , если верна современная космологическая модель ΛCDM .
  • В акустике также существует конечная скорость распространения взаимодействия - скорость звука , в силу чего математический аппарат и физические следствия акустики и теории относительности становятся аналогичными, а в сверхзвуковых потоках жидкости или газа возникают аналоги горизонтов событий - акустические горизонты.

См. также

Напишите отзыв о статье "Горизонт событий"

Примечания

Отрывок, характеризующий Горизонт событий

– Нельзя не сознаться, – продолжал князь Андрей, – Наполеон как человек велик на Аркольском мосту, в госпитале в Яффе, где он чумным подает руку, но… но есть другие поступки, которые трудно оправдать.
Князь Андрей, видимо желавший смягчить неловкость речи Пьера, приподнялся, сбираясь ехать и подавая знак жене.

Вдруг князь Ипполит поднялся и, знаками рук останавливая всех и прося присесть, заговорил:
– Ah! aujourd"hui on m"a raconte une anecdote moscovite, charmante: il faut que je vous en regale. Vous m"excusez, vicomte, il faut que je raconte en russe. Autrement on ne sentira pas le sel de l"histoire. [Сегодня мне рассказали прелестный московский анекдот; надо вас им поподчивать. Извините, виконт, я буду рассказывать по русски, иначе пропадет вся соль анекдота.]
И князь Ипполит начал говорить по русски таким выговором, каким говорят французы, пробывшие с год в России. Все приостановились: так оживленно, настоятельно требовал князь Ипполит внимания к своей истории.
– В Moscou есть одна барыня, une dame. И она очень скупа. Ей нужно было иметь два valets de pied [лакея] за карета. И очень большой ростом. Это было ее вкусу. И она имела une femme de chambre [горничную], еще большой росту. Она сказала…
Тут князь Ипполит задумался, видимо с трудом соображая.
– Она сказала… да, она сказала: «девушка (a la femme de chambre), надень livree [ливрею] и поедем со мной, за карета, faire des visites». [делать визиты.]
Тут князь Ипполит фыркнул и захохотал гораздо прежде своих слушателей, что произвело невыгодное для рассказчика впечатление. Однако многие, и в том числе пожилая дама и Анна Павловна, улыбнулись.
– Она поехала. Незапно сделался сильный ветер. Девушка потеряла шляпа, и длинны волоса расчесались…
Тут он не мог уже более держаться и стал отрывисто смеяться и сквозь этот смех проговорил:
– И весь свет узнал…
Тем анекдот и кончился. Хотя и непонятно было, для чего он его рассказывает и для чего его надо было рассказать непременно по русски, однако Анна Павловна и другие оценили светскую любезность князя Ипполита, так приятно закончившего неприятную и нелюбезную выходку мсье Пьера. Разговор после анекдота рассыпался на мелкие, незначительные толки о будущем и прошедшем бале, спектакле, о том, когда и где кто увидится.

Поблагодарив Анну Павловну за ее charmante soiree, [очаровательный вечер,] гости стали расходиться.
Пьер был неуклюж. Толстый, выше обыкновенного роста, широкий, с огромными красными руками, он, как говорится, не умел войти в салон и еще менее умел из него выйти, то есть перед выходом сказать что нибудь особенно приятное. Кроме того, он был рассеян. Вставая, он вместо своей шляпы захватил трехугольную шляпу с генеральским плюмажем и держал ее, дергая султан, до тех пор, пока генерал не попросил возвратить ее. Но вся его рассеянность и неуменье войти в салон и говорить в нем выкупались выражением добродушия, простоты и скромности. Анна Павловна повернулась к нему и, с христианскою кротостью выражая прощение за его выходку, кивнула ему и сказала:
– Надеюсь увидать вас еще, но надеюсь тоже, что вы перемените свои мнения, мой милый мсье Пьер, – сказала она.
Когда она сказала ему это, он ничего не ответил, только наклонился и показал всем еще раз свою улыбку, которая ничего не говорила, разве только вот что: «Мнения мнениями, а вы видите, какой я добрый и славный малый». И все, и Анна Павловна невольно почувствовали это.
Князь Андрей вышел в переднюю и, подставив плечи лакею, накидывавшему ему плащ, равнодушно прислушивался к болтовне своей жены с князем Ипполитом, вышедшим тоже в переднюю. Князь Ипполит стоял возле хорошенькой беременной княгини и упорно смотрел прямо на нее в лорнет.
– Идите, Annette, вы простудитесь, – говорила маленькая княгиня, прощаясь с Анной Павловной. – C"est arrete, [Решено,] – прибавила она тихо.
Анна Павловна уже успела переговорить с Лизой о сватовстве, которое она затевала между Анатолем и золовкой маленькой княгини.
– Я надеюсь на вас, милый друг, – сказала Анна Павловна тоже тихо, – вы напишете к ней и скажете мне, comment le pere envisagera la chose. Au revoir, [Как отец посмотрит на дело. До свидания,] – и она ушла из передней.
Князь Ипполит подошел к маленькой княгине и, близко наклоняя к ней свое лицо, стал полушопотом что то говорить ей.
Два лакея, один княгинин, другой его, дожидаясь, когда они кончат говорить, стояли с шалью и рединготом и слушали их, непонятный им, французский говор с такими лицами, как будто они понимали, что говорится, но не хотели показывать этого. Княгиня, как всегда, говорила улыбаясь и слушала смеясь.
– Я очень рад, что не поехал к посланнику, – говорил князь Ипполит: – скука… Прекрасный вечер, не правда ли, прекрасный?
– Говорят, что бал будет очень хорош, – отвечала княгиня, вздергивая с усиками губку. – Все красивые женщины общества будут там.
– Не все, потому что вас там не будет; не все, – сказал князь Ипполит, радостно смеясь, и, схватив шаль у лакея, даже толкнул его и стал надевать ее на княгиню.